On detection of population stratification in genotype samples using spacial clustering and non-linear optimization.

Vinzent Boerner

Animal Genetics and Breeding Unit (AGBU), University of New England Armidale, 2351, NSW, Australia

13/02/2018

Intro

Why searching for population stratification

How to account for it??

How to get Q??

Q|M,F

 $\int p(Q,F|M) \propto p(M|F,Q)p(F)p(Q)$

How to get Q if F is unknown: The Loop

Rotate column vectors in F through R^N until all points presented by columns in M are explained best

F|M,Q

ADMIXTURE, FRAPPE, STRUCTURE

How to get Q if F is unknown: The 2-Step Cascade

How to get Q if F is unknown: The 2-Step Cascade

point aggregations in $R^N = >$ clouds

How to get Q if F is unknown: The 2-Step Cascade

< □ > < @ > < ≧ > < ≧ >

How to get Q if F is unknown: The 2-Step Cascade

How to get Q if F is unknown: The 2-Step Cascade

Step 1: Cloud detection by cluster analysis

mixed sample

Step 1: Cloud detection by cluster analysis

13/02/2018

7 / 18

Step 1: Cloud detection by cluster analysis

13/02/2018 7 / 18

Step 1: Cloud detection by cluster analysis

Step 2: genome composition by a linear model

constraints require non-linear optimisation solver

Step 2: genome composition by a linear model

• E: SNP×animals matrix of non-explainable residual

• constraints require non-linear optimisation solver

M = FQ' + E

Constrained Genomic Regression (CGR, aka "BREEDCOMP")

- non-linear optimisation solver
 - obal augmented Lagrangian
 - method of moving asymptotes

< □ > < 同 > < Ξ > < Ξ)</p>

Simmental	337
Charolais	899
Murray Grey	316
Hereford	1,500
Angus	1,473
Limousin	1,395
Shorthorn	1,126
Wagyu	1,497
Santa Gertrudis	1,474
Droughtmaster	130
Brahman	1,492
	11,639

Data

4022 SNP common across many panels

Data

Population recovery: Number of founder populations

V. Boerner (AGBU)

13/02/2018 10 / 18

Population recovery: allele frequency

Helping ADMIXTURE: N_{pop}=11(aka "prior knowledge")

Population recovery: allele frequency

 V. Boerner (AGBU)
 13/02/2018
 11 / 18

Population recovery: allele frequency

13/02/2018 11 / 18

Population recovery: allele frequency

Genome proportion recovery

 $E = |\widehat{Q} - Q_{true}|$

agbud

12 / 18

13/02/2018

+□ > +@ > + ≥ > + ≥

founder breeds

Genome proportion recovery

Speed

Speed

Conclusion

 Loop approach (ADMIXTURE) => caution number of populations is unknown may fail to detect number of populations subsequently may wrongly assign genome proportions number of populations is known o may wrongly assign genome proportions • F is known ("supervised") • may wrongly assign genome proportions (Boerner, AAABG 2017) \circ OPTICS => fast and precise \circ detection of point aggregations => pure-bred animals, stabilised crosses \circ detection of noise => cross-bred animals cluster allele frequencies reflect founder allele frequencies relies on point aggregations \circ CGR => fast and precise requires good estimate of allele frequencies

Acknowledgement

DNA submitting breeders

Meat and Livestock Australia

Animal Genetics and Breeding Unit (AGBU)

A joint venture of the University of New England and the NSW Department of Primary Industry

download CGR: http://turing.une.edu.au/~agbu-admin/BESSiE/

Supervised genome proportion recovery human data set

Population recovery: OPTICS vs. ADMIXTURE

17 / 18

Population recovery: OPTICS vs. ADMIXTURE

Population recovery: OPTICS vs. ADMIXTURE

Population recovery: OPTICS vs. ADMIXTURE

Population recovery: OPTICS vs. ADMIXTURE

Population recovery: OPTICS vs. ADMIXTURE

