Bavarian State Research Center for Agriculture

Effects of different groups of cows in the reference population on genomic breeding values

Laura Plieschke, C Edel, ECG Pimentel, R Emmerling, K-U Götz

Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Prof.-Dürrwaechter-Platz 1, 85586 Poing-Grub, Germany

27. August 2018

Simulation study: extending the reference population by genotyped cows

Plieschke et al. Genet Sel Evol (2016) 48:73 DOI 10.1186/s12711-016-0250-9

RESEARCH ARTICLE

Open Access

Systematic genotyping of groups of cows to improve genomic estimated breeding values of selection candidates

Laura Plieschke^{1*}, Christian Edel¹, Eduardo C. G. Pimentel¹, Reiner Emmerling¹, Jörn Bennewitz² and Kay-Uwe Götz¹

☐ Effects of selected cow samples:

Scenario		N	Validation	L
	bulls	cows	reliability (%)	b
basic	4200	0	40	.99
/50	4200	52,500	65	.95
/50s	4200	52,500		

☐ Effects of selected cow samples:

Scenario		N	Validation	L
	bulls	cows	reliability (%)	b
basic	4200	0	40	.99
/50	4200	52,500	65	.95
/50s	4200	52,500	42	.76

Extending the reference population by females increases
reliability of genomic breeding values

- Selected daughter sample
 - directional selection decreases benefits on validation reliability
 - leads to biased results
 - negative effects are hard to compensate for

Objective

☐ What changes do we find when looking at real data?

What happens if we extend the reference population by cows now?

What changes can be detected?

Objective

- ☐ When including cows: why not using **single-step**?
 - all cows are included
- ☐ In practice:
 - selection hardly to avoid
 - selection not only based on phenotype, but also on EBV
 - selection based on different trait
 - we do not know whether an animal is pre-selected or not

- Stepwise procedure:
 - two-step GBLUP including blending
 - ✓ bulls
 - ✓ bulls and cows
 - ✓ bulls and different group of cows
 - single-step GBLUP
 - ✓ using DRP

"Project-cows"

"Routine-cows"

- Fleckvieh data
- 3 traits: MY, FY, PY
- Number of genotyped females is small

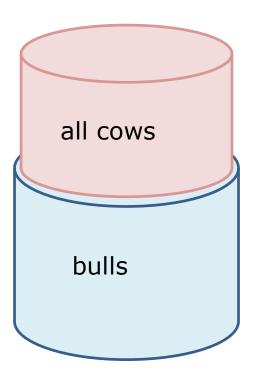
- Fleckvieh data
- 3 traits: MY, FY, PY
- Number of genotyped females is small
 - minus-4-year validation (m4y)
 - minus-2-year validation (m2y)
- Validation animals:
 - same animals for all sets
 - m4y: ca. 1600
 - m2y: ca. 775

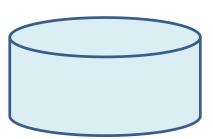
Compared reference population

			N		
Set	Explanation	m4y			2y
		bulls	cows	bulls	cows
0	bulls	7085	0		
1	bulls + all cows	7085	4449		
1a	bulls + routine-cows	7085	673		
1b	bulls + project-cows	7085	3773		

Compared reference population

		N _						
Set	Explanation	m	4 y	m2y				
		bulls	cows	bulls	cows			
0	bulls	7085	0	8107	0			
1	bulls + all cows	7085	4449	8107	6572			
1a	bulls + routine-cows	7085	673	8107	2630			
1b	bulls + project-cows	7085	3773	8107	3942			

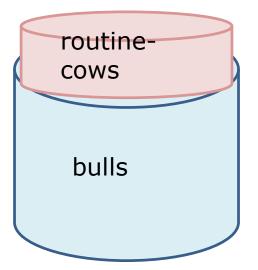

Compared reference population

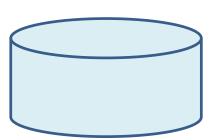

Animal Breeding

			N		
Set	Explanation	m ₄	4 y	m2y	
		bulls cows		bulls	cows
0	bulls	7085	0	8107	0
1	bulls + all cows	7085	4449	8107	6572
1a	bulls + routine-cows	7085	673	8107	2630
1b	bulls + project-cows	7085	3773	8107	3942
1ss	single-step	>7085	>4449	>8107	>6572

Reference animals

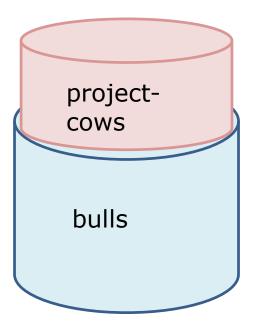
Validation animals

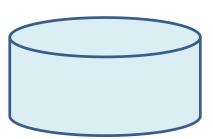




■ Reference animals

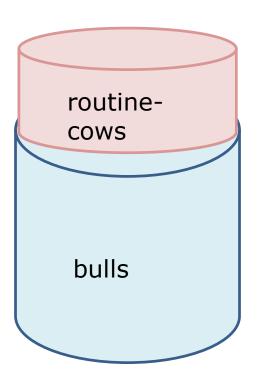
■ Validation animals

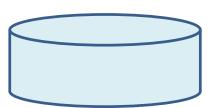




Reference animals

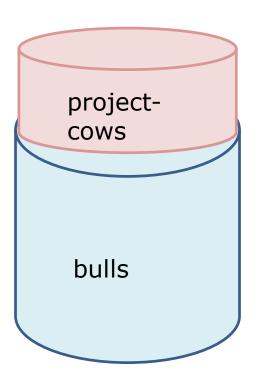
Validation animals

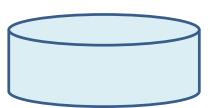



Reference animals Validation animals minus-2-year validation all cows bulls

Reference animals

■ Validation animals





■ Reference animals

■ Validation animals

				Realized reli	iability (%)		
Set	Explanation		m4y			m2y	
		MY	FY	PY	MY	FY	PY
0	bulls	62	61	60	69	59	65
1	bulls + all cows	64	62	61	72	62	67
1a	bulls + routine-cows						
1b	bulls + project-cows			oilities wh pulation l		_	
1ss	Single-step						

				b			
Set	Explanation		m4y			m2y	
		MY	FY	PY	MY	FY	PY
0	bulls	.96	.94	1.03	.90	.88	.95
1	bulls + all cows	.98	.96	1.04	.91	.91	.94
1a	bulls + routine-cows						
1b	bulls + project-cows		Slightly h	igher b w	hen inclu	ıding cow	rs
1ss	Single-step						

		Realized reliability (%)						
Set	Explanation _		m4y		m2y			
0	bulls	•	similar, project-co	ws seem	to have a	a slightly		
1	bulls + all cows	more	positive	effect				
1 a	bulls + routine-cows	62	61	61	69	59	66	
1b	bulls + project-cows	64	62	62	70	60	66	
1ss	Single-step							

Set	Explanation	m4y m2y					
0	bulls	but p	_	ws seem	to have a	a slightly	
1	bulls + all cows	more	positive	effect			
1a	bulls + routine-cows	.96	.94	1.03	.90	.89	.95
1b	bulls + project-cows	.98	.95	1.04	.90	.90	.96
1ss	Single-step						

			Realized reliability (%)					
Set	Explanation		m4y			m2y		
		MY	FY	PY	MY	FY	PY	
0	bulls	62	61	60	69	59	65	
1	bulls + all cows	64	62	61	72	62	67	
1a	bulls + routine-cows	62	61	61	69	59	66	
1b	bulls + project-cows	64	62	62	70	60	66	
1ss	Single-step	66	63	60	74	64	68	

				t)		
Set	Explanation		m4y			m2y	
		MY	FY	PY	MY	FY	PY
0	bulls	.96	.94	1.03	.90	.88	.95
1	bulls + all cows	.98	.96	1.04	.91	.91	.94
1a	bulls + routine-cows	.96	.94	1.03	.90	.89	.95
1b	bulls + project-cows	.98	.95	1.04	.90	.90	.96
1ss	Single-step	.89	. 91	.92	.85	.89	.88

Discussion

- Effects on validation statistics were small
- Effects on validation statistics in simulation study were large
 - 4200 + 52,500 bulls & cows vs. 8107 + 6572 bulls & cows
 - selected vs. unselected sample in real data
 - ✓ no pre-selection in routine-cows
 - ✓ selection was based on a different trait
- BUT: slight differences can be found

Conclusions

- Extending the reference population by females increases reliability of genomic breeding values also in real data
- Differences between groups were very small
 - number of females is still low
 - different size of groups
 - however small tendencies can be found, that should be further observed in the future

Conclusions

- Replace two-step GBLUP with single-step GBLUP:
 - extends the reference population indirectly
 - results in higher realized reliabilities
 - with slightly higher inflation

Thank you for your attention

We gratefully acknowledge:

Arbeitsgemeinschaft Süddeutscher Rinderzucht- und Besamungsorganisationen

