

Norwegian University of Life Sciences *Faculty of Biosciences*

Heritability of methane emission in young Norwegian Red bulls

Bjørg Heringstad and Karoline A. Bakke

bjorg.heringstad@nmbu.no

Interbull meeting, August 2023

Breeding program for Norwegian Red

Recruting AI bulls:

- 100.000 NR bull calves born per year
- The 8.000 with highest EBV are genotyped
- Geno buys ≈ 150 bull calves each year
- 50 selected AI sires per year

Measuring methane on young bulls at Geno's test station

- ≈ 150 bull calves to test station each year
- Arrive 3-4 months old
- Pens with ≈10 bulls
- GreenFeed (<u>www.c-lockinc.com</u>) equipment for CH₄ recording
- Measure methane last month before leaving test station (at 11-12 mo old)
- On average 40 days with methane data
- Phenotype data on both selected AI bulls and non-selected

Measuring methane emission in young Norwegian Red bulls

Methane (CH₄) data from September 2020 to April 2023

- Data edits:
 - Bulls > 10 CH₄ measures
 - Testdays > 10 CH₄ measures
- Final data:
 - 76 094 observations (GF visits)
 - 212 young Norwegian Red bulls
 - 964 testdays
 - From 13 to 794 GF visits per bull, mean 359
 - From 10 to 115 visits per day, mean 79

Methane emission young Norwegian Red bulls

Distribution of CH4 records (g/day)

- Mean: 218 g/day
- SD: 50 g/day
- 212 young bulls
- September 2020 to April 2023

NORWEGIAN

Variation in methane emission within and between bulls

Phenotypic variation in methane

- Boxplot of methane records per bull, sorted by increasing mean value
- Mean CH4 (g/day) from 153 to 287

Estimating heritability

• Traits

- CH₄ g/day (per visit)
- CH₄ mean per bull per day (8 713 records)
- Estimating variance components using DMU (Madsen and Jensen, 2013)

• Linear animal repeatability model

 CH_4 = age + group-testday + pe + animal + e

- Fixed effects of age in weeks (23 classes) and group-testday (964 days)
- Random effects of permanent environment (pe) and animal
- Pedigree file: 4 233 animals

Estimated heritability

	CH ₄ per visit		CH₄ mean per day	
Variance component	Estimate	Standard error	Estimate	Standard error
ре	153	194	141	188
animal	532	216	538	211
residual	1479	8	278	5
Heritability	0.24	0.10	0.56	0.20
Repeatability	0.32		0.71	

Effects of age and group-testday

Fixed effect solutions:

Breeding values for bulls with CH4 phenotype

EBV range from -37 to 60, with standard error between 12 and 15

Correlations between EBV for methane (CH4) and indexes from routine genetic evaluations

Traits with the strongest positive and negative correlations to EBV for CH₄:

	Correlation
	to CH4
Carcass weight	0.34
Angularity/rib structure ¹	0.29
Body depth ¹	0.27
Body total score ¹	0.26
Stature ¹	0.25

¹ Trait not included in the Norwegian total merit index

Positive correlation = High CH₄ associated with high index for other traits

Unfavorable index correlation to body conformation traits

	Correlation to CH4
Calf size, direct ²	-0.36
Calving ease, direct	-0.34
Stillbirth, direct	-0.25
Hock quality ¹	-0.23
Bone structure ^{1,3}	-0.22

² Calf size: High score is small calf

³ Bone structure: High score is very fine and thin bones low score for coarse bones (broad and thick).

Negative correlation = low CH_4 associated with good genetic merit for other traits

Favorable index correlation to calving traits

Breeding values for methane emission young Norwegian Red bulls

- Predicted breeding values for methane for 212 young Norwegian Red bulls with CH₄ phenotype
- Sorted from lowest to highest
- Color indicate AI-bull selection:

Selected (red)

Not selected (blue)

Results so far:

- Promising
- Good CH₄ data from GreenFeed
- Genetic variation for CH₄ in NR
- Breeding for lower CH₄ emission is feasible

Further research:

- CH₄ young bulls vs lactating dairy cows
- Accuracy of genomic breeding values
- Genetic associations to other important traits
 - Feed efficiency, milk yield, health and fertility...
- Merging methane and feed efficiency projects
- Trait definitions
- How to breed a feed efficient, climate friendly cow?

We aim to balance climate effects, feed efficiency, production, health and fertility in a sustainable breeding goal for Norwegian Red

