A Single-Step evaluation of functional longevity of cows including data from correlated traits

Laure-Hélène Maugan¹, Thierry Tribout¹, Roberta Rostellato², Sophie Mattalia^{3,1}, Vincent Ducrocq^{1,*}

¹ Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France

² GenEval, 3 Rue du Petit Robinson, 78350 Jouy-en-Josas, France

³ Idele, 78350 Jouy-en-Josas, France

A Single-Step evaluation of functional longevity of cows including data from correlated traits

= part of Laure-Hélène Maugan's PhD at INRAE / AgroParisTech

NRAO Lyon, France August 26-27 2023

UniGéno: a generalization of single-step evaluations to all traits / all dairy and beef breeds

here :

Development of a Single-Step evaluation of *functional longevity* of cows including data from correlated traits

Montbéliarde

August 26-27 2023

For a farmer, two major objectives for heifers « at birth »

- High production
- Long functional life (= independent from production)
- Survival analysis => « survival kit » software to evaluate sires
 - accounts for censored records (= information from animals still alive)
 - corrects for level of milk production
 - Main problem: not accurate when daughters are still young !

Implementation before the genomic era

1. linearize the survival analysis model

in order to get a **cow EBV for functional longevity**

(underlying idea: construct a **cow pseudo-record for « functional life » corrected for fixed effects** and such that an animal model BLUP evaluation of these pseudo-records leads to the <u>same functional longevity breeding values of the sires</u>)

at this stage, the pseudo-record \mathbf{y}_i of cow i (**culled or still alive**) can be written as: $y_i = \mu + a_i + \varepsilon_i$ where a_i is the breeding value of i and $var(\varepsilon_i)$ is derived from the survival model

Implementation *before the genomic era*

2. Derive similar cow pseudo-records for traits genetically correlated with functional longevity.

(for example: conception rate, somatic cells score, clinical mastitis, etc.)

This is usually easier than for functional longevity because

breeding values come directly from an animal model

Again, the **pseudo-records** y_i of cow i can be written as $y_i = \mu + a_i + \varepsilon_i$

Implementation before the genomic era

3. Include these pseudo-records in a **multiple trait evaluation** together with cow records on **traits correlated with functional life**

Long functional life

Conception rate Somatic cells score, Clinical mastitis, etc.

Long functional life

Conception rate

Somatic cells score,

Clinical mastitis, etc.

combined evaluation = multiple trait evaluation of pseudo-records

Consequences : more accurate **functional longevity EBV of cows**

+ other functionnal traits + easy inclusion in Total Merit Index

Lyon, France August 26-27 2023

Extension to single-step evaluations?

- Main problem: Functional longevity genomic evaluations « alone » were among the less accurate ones ...
- Predictor traits exist ! e.g., Genetic correlation with fuctional longevity:

Conception rate for heifer	Conception rate for cow		Clinical mastitis	Udder development
-0.12	-0.45	0.60	0.63	0.60
(Rostellato et al. 202				

• But **Multiple trait genomic evaluations** too complex, especially because based on very different models ...

A combined single-step evaluation

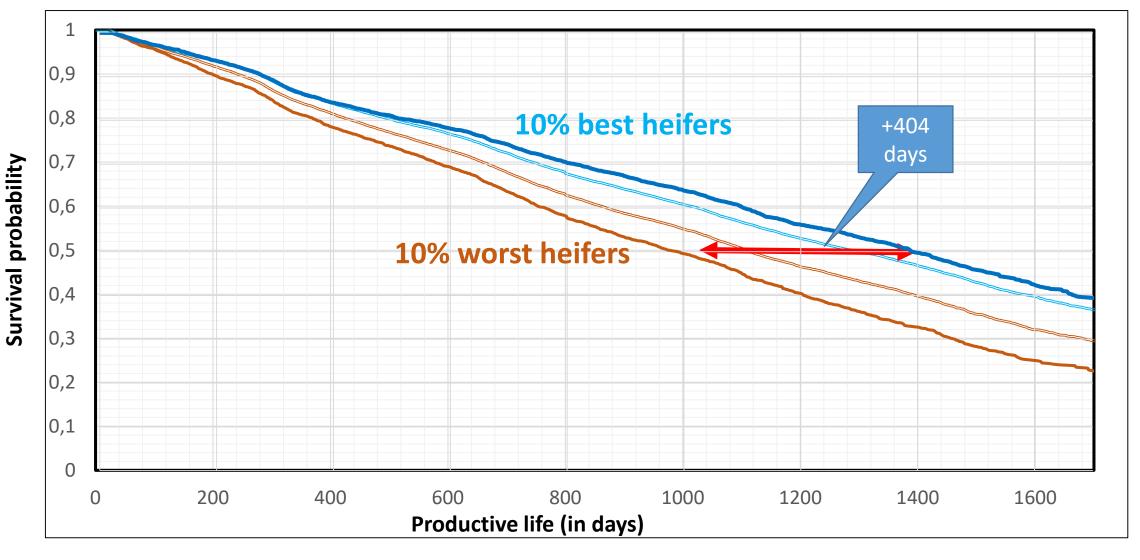
- Step 1: Run a **sire genetic** analysis of functional longevity and derive **pseudo records** for functional longevity of **cows**
- Step 2: Run a univariate animal model single-step evaluation
 of each predictor trait of all animals with a least one record on one trait
 and derive the corresponding pseudo-records and their associated weight
- Step 3: Combine these results into a **multiple-trait single-step evaluation** of all animals with a pseudo-record and their ancestors (easy!)
- (Step 4: Combine into a total merit index)


An example of combined single-step evaluation

- consider all data collected of Montbéliade cows born since 1998
- mimic a single-step functional longevity evaluation alone vs combined in 2016 of genotyped and non genotyped cows

Compare true functional longevity (survival curves) of groups of genotyped and non-genotyped cows born in 2014/2015 as observed in 2021 (deciles: top 10%, next 20%, etc..)

Survivor curves of *non genotyped heifers*

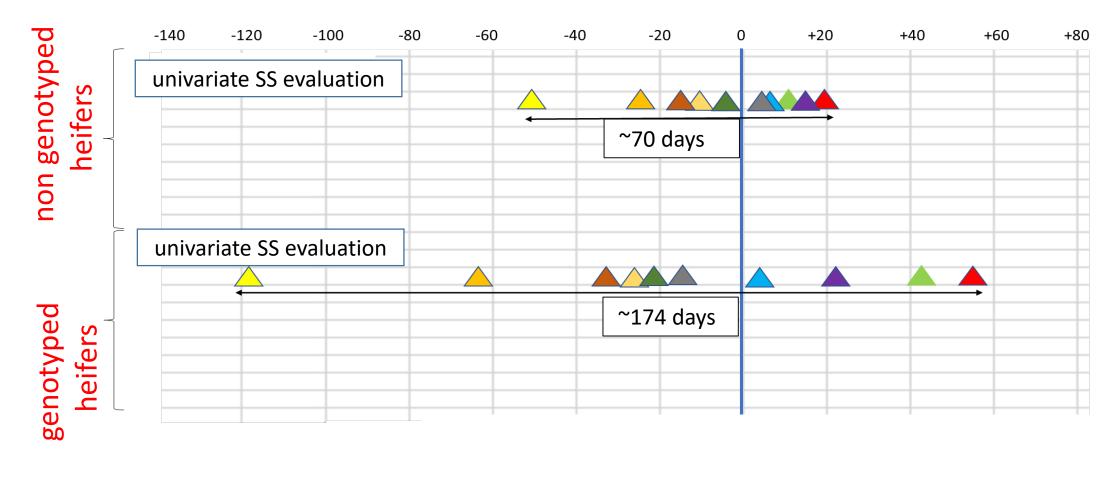


August 26-27 2023

INRAØ

Lyon, France

Survivor curves of *genotyped heifers*

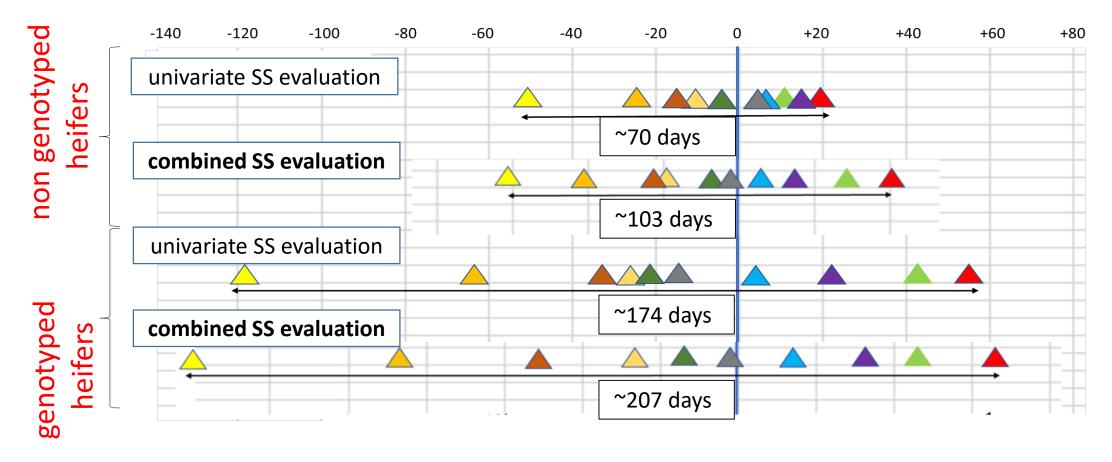

August 26-27 2023

INRAØ

Lyon, France

Variation in **functional life expectancy** at birth (expressed in days)

Average productive life (as a deviation from the mean)


August 26-27 2023

INRAC

Lyon, France

Variation in **functional life expectancy** at birth (expressed in days)

Average productive life (as a deviation from the mean)

Lyon, France August 26-27 2023

INRAC

Conclusion: The Single-step evaluations of functional longevity of Montbéliarde heifers are good predictors of their « future stayability in the herd »

- As expected, Single-Step breeding values of functional longevity lead to more accurate predictions for genotyped heifers than for ungenotyped ones
- The Single-Step breeding values of young heifers combining information on traits correlated with survival can inform the farmer about which are the ones that are more likely to be culled early

