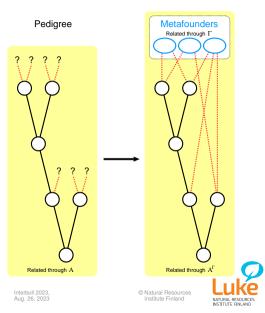
Estimation of metafounder relationships for multibreed single-step genomic evaluation of Finnish beef breeds

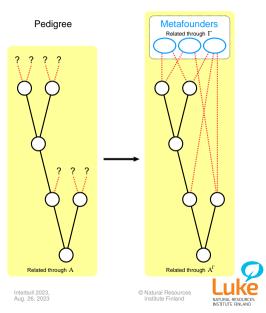
Matti Taskinen, Timo J. Pitkänen, Anna-Maria Leino, Esa A. Mäntysaari, Minna Koivula, Andrei Kudinov, Ismo Strandén Natural Resources Institute Finland (Luke)

Interbull 2023, Aug. 26, 2023

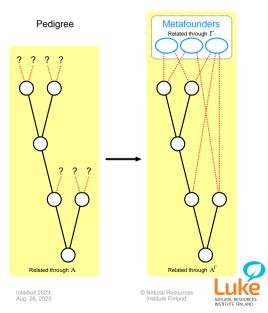
© Natural Resources Institute Finland



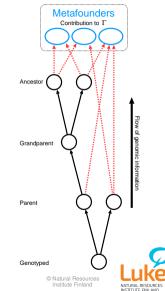
- Finnish multibreed beef evaluation.
- Applying metafounder concept.
- Estimating **metafounder relations** from genomic information.


Metafounders: Supplementing pedigree with genomic data

- Metafounders concept: <u>unknown</u> parents in pedigree replaced with "metafounders".
- Metafounders assumed to be related through Γ matrix that is estimated from genomic data.
- Goal: make pedigree relations closer to genomic relations.

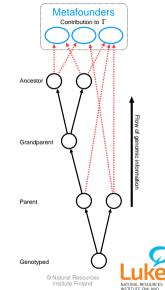

Metafounders: Supplementing pedigree with genomic data

- Metafounders concept: <u>unknown</u> parents in pedigree replaced with "metafounders".
- Metafounders assumed to be related through Γ matrix that is estimated from genomic data.
- Goal: make pedigree relations closer to genomic relations.

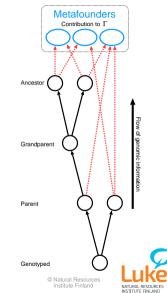

Metafounders: Supplementing pedigree with genomic data

- Metafounders concept: <u>unknown</u> parents in pedigree replaced with "metafounders".
- Metafounders assumed to be related through Γ matrix that is estimated from genomic data.
- Goal: make pedigree relations closer to genomic relations.

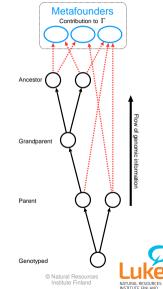
Metafounder relations <u>estimated from pedigree using</u> **base population allele frequencies** of MFs:


- Genomic information "inherited" from genotyped animals to their ancestors.
- MFs obtain contribution of genomic information through missing parents in pedigree.
- Allele frequencies estimated (Garcia-Baccino et al. 2017) using in-house Bpop program.
- **Γ matrix** calculated from allele frequencies (Legarra et al. 2014).

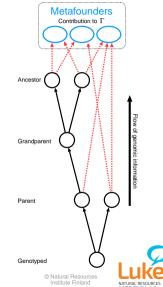
Interbull 2023, Aug. 26, 2023


Metafounder relations <u>estimated from pedigree using</u> **base population allele frequencies** of MFs:

- Genomic information "inherited" from genotyped animals to their ancestors.
- MFs obtain contribution of genomic information through missing parents in pedigree.
- Allele frequencies estimated (Garcia-Baccino et al. 2017) using in-house Bpop program.
- **Γ matrix** calculated from allele frequencies (Legarra et al. 2014).


Metafounder relations <u>estimated from pedigree using</u> **base population allele frequencies** of MFs:

- Genomic information "inherited" from genotyped animals to their ancestors.
- MFs obtain contribution of genomic information through missing parents in pedigree.
- Allele frequencies estimated (Garcia-Baccino et al. 2017) using in-house Bpop program.
- **Γ matrix** calculated from allele frequencies (Legarra et al. 2014).


Metafounder relations <u>estimated from pedigree using</u> **base population allele frequencies** of MFs:

- Genomic information "inherited" from genotyped animals to their ancestors.
- MFs obtain contribution of genomic information through missing parents in pedigree.
- Allele frequencies estimated (Garcia-Baccino et al. 2017) using in-house Bpop program.
- **r matrix** calculated from allele frequencies (Legarra et al. 2014).

Metafounder relations <u>estimated from pedigree using</u> **base population allele frequencies** of MFs:

- Genomic information "inherited" from genotyped animals to their ancestors.
- MFs obtain contribution of genomic information through missing parents in pedigree.
- Allele frequencies estimated (Garcia-Baccino et al. 2017) using in-house Bpop program.
- **Γ matrix** calculated from allele frequencies (Legarra et al. 2014).

- Pure breed groups for 5 common breeds.
- Separate domestic and foreign groups.
- Dairy animals in beef pedigree (mk).
- Others (ot):
 - ► All crossbreds.
 - Purebreds of other breeds.
- Many year classes.
- Altogether 115 MFs needed.

Group	Breed	Country
1 2 3 4 5	hf hf aa aa ch	domestic foreign domestic foreign domestic
6 7 8 9 10 11 12	ch li si si mk ot	foreign domestic foreign domestic foreign * *

- Pure breed groups for 5 common breeds.
- Separate domestic and foreign groups.
- Dairy animals in beef pedigree (mk).
- Others (ot):
 - ► All crossbreds.
 - Purebreds of other breeds.
- Many year classes.
- Altogether 115 MFs needed.

Group	Breed	Country
1	hf	domestic
2	hf	foreign
3	aa	domestic
4	aa	foreign
5	ch	domestic
6	ch	foreign
7	li	domestic
8	li	foreign
9	si	domestic
10	si	foreign
11	mk	*
12	ot	*

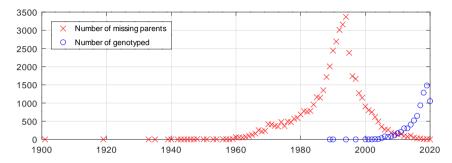
- Pure breed groups for 5 common breeds.
- Separate domestic and foreign groups.
- Dairy animals in beef pedigree (mk).
- Others (ot):
 - ► All crossbreds.
 - Purebreds of other breeds.
- Many year classes.
- Altogether 115 MFs needed.

Group	Breed	Country
1	hf	domestic
2	hf	foreign
3	aa	domestic
4	aa	foreign
5	ch	domestic
6	ch	foreign
7	li	domestic
8	li	foreign
9	si	domestic
10	si	foreign
11	mk	*
12	ot	*

- Pure breed groups for 5 common breeds.
- Separate domestic and foreign groups.
- Dairy animals in beef pedigree (mk).
- Others (ot):
 - All crossbreds.
 - Purebreds of other breeds.
- Many year classes.
- Altogether 115 MFs needed.

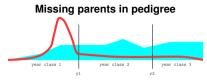
Group	Breed	Country
1	hf	domestic
2	hf	foreign
3	aa	domestic
4	aa	foreign
5	ch	domestic
6	ch	foreign
7	li	domestic
8	li	foreign
9	si	domestic
10	si	foreign
11	mk	*
12	ot	*

In this project: MFs needed to match Unknown Parent Groups of old evaluations:

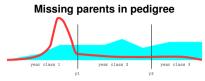

- Pure breed groups for 5 common breeds.
- Separate domestic and foreign groups.
- Dairy animals in beef pedigree (mk).
- Others (ot):
 - All crossbreds.
 - Purebreds of other breeds.
- Many year classes.
- Altogether 115 MFs needed.

Unknown Parent Groups

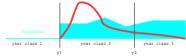
hf	domestic	1980,1985,1990,1995,2000,2005,2010,2015
hf	foreign	1980,1984,1989,1994,1999,2004,2009
aa	domestic	1980,1986,1991,1996,2001,2006,2011,2016
aa	foreign	1980,1984,1989,1994,1999,2004,2009
ch	domestic	1980,1985,1990,1995,2000,2005,2010,2015
ch	foreign	1980,1981,1986,1991,1996,2001,2006,2011
li	domestic	1989,1994,1999,2004,2009,2014
li	foreign	1980,1983,1988,1993,1998,2003,2008,2013
si	domestic	1991,1996,2001,2006,2011,2016
si	foreign	1980,1981,1986,1991,1996,2001,2006,2011
rdc	•	1980,1983,1988,1993,1998,2003,2008
fic	•	1980,1984,1989,1994,1999,2004
hol	•	1980,1984,1989,1994,1999,2004,2009
ot	•	1980,1984,1989,1994,1999,2004,2009


Metafounder challenge: Estimating Γ to the past

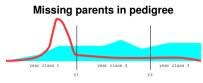
- Genotyped animals (blue) mostly from last few years (2018-2023).
- Metafounder relationships needed even before 1990.
- Base population relations need to be estimated 30 years back in time.



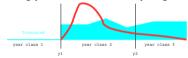
- Some year classes <u>don't have enough</u> <u>missing parents</u> to get genomic contributions
- When truncating pedigree, contribution from domestic offspring can "leak" to foreign MF.
- Similarly, <u>crossbred</u> offspring quite often "looses" genomic contribution to purebred MFs.
- Solution: different **pedigree truncation strategies** applied to control distribution of "missing" parents.

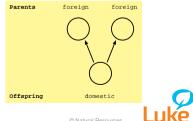


- Some year classes <u>don't have enough</u> <u>missing parents</u> to get genomic contributions ⇒ **pedigree truncation**.
- When truncating pedigree, contribution from domestic offspring can "leak" to foreign MF.
- Similarly, <u>crossbred</u> offspring quite often "looses" genomic contribution to purebred MFs.
- Solution: different **pedigree truncation strategies** applied to control distribution of "missing" parents.



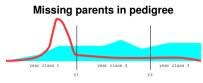
Missing parents in truncated pedigree



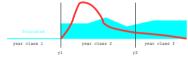


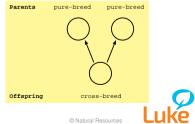
- Some year classes <u>don't have enough</u> <u>missing parents</u> to get genomic contributions ⇒ **pedigree truncation**.
- When truncating pedigree, contribution <u>from domestic</u> offspring can "leak" <u>to</u> <u>foreign MF</u>.
- Similarly, <u>crossbred</u> offspring quite often "looses" genomic contribution to purebred <u>MFs</u>.
- Solution: different pedigree truncation strategies applied to control distribution of "missing" parents.

Missing parents in truncated pedigree



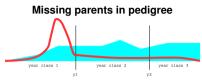
i Taskinen

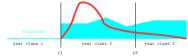

Interbull 2023, Aug. 26, 2023 © Natural Resource Institute Finland

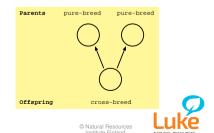

INSTITUTE EINI AND

- Some year classes <u>don't have enough</u> <u>missing parents</u> to get genomic contributions ⇒ **pedigree truncation**.
- When truncating pedigree, contribution <u>from domestic</u> offspring can "leak" <u>to</u> <u>foreign MF</u>.
- Similarly, <u>crossbred</u> offspring quite often "looses" genomic contribution <u>to purebred</u> <u>MFs</u>.
- Solution: different pedigree truncation strategies applied to control distribution of "missing" parents.

Missing parents in truncated pedigree




Interbull 2023, Aug. 26, 2023 Natural Resource Institute Finland


INSTITUTE EINI AND

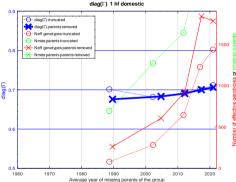
- Some year classes <u>don't have enough</u> <u>missing parents</u> to get genomic contributions ⇒ **pedigree truncation**.
- When truncating pedigree, contribution <u>from domestic</u> offspring can "leak" <u>to</u> <u>foreign MF</u>.
- Similarly, <u>crossbred</u> offspring quite often "looses" genomic contribution <u>to purebred</u> <u>MFs</u>.
- Solution: different **pedigree truncation strategies** applied to control distribution of "missing" parents.

Missing parents in truncated pedigree

INSTITUTE EINI AND

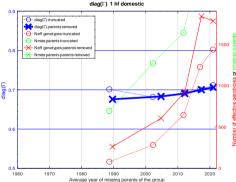
- Genomic data (currently):
 - ► Number of genotypes: 17494.
 - Most are domestic purebreds.
 - Foreign groups have far less genotypes.
- Not enough genotypes to match 115 UPG:
 - Solution: MF relations <u>estimated first</u> for fewer number of MF year classes.
 Then interpolated to cover original UPG year classes.

Group		Genotypes		
			22.11	23.06
1 ł	nf	domestic	3730	3857
2 ł	nf	foreign	52	56
3 a	aa	domestic	3426	3716
4 a	aa	foreign	78	77
5 0	ch	domestic	2894	3118
6 0	ch	foreign	88	94
71	i	domestic	1841	1987
81	i	foreign	70	74
9 క	si	domestic	2124	2275
10 క	si	foreign	77	88
12 0	ot	*	1362	1594
			15744	17494



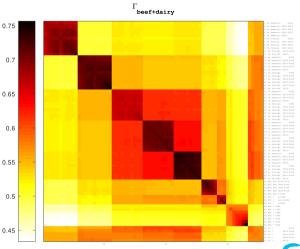
- Genomic data (currently):
 - ► Number of genotypes: 17494.
 - Most are domestic purebreds.
 - Foreign groups have far less genotypes.
- Not enough genotypes to match 115 UPG:
 - Solution: MF relations <u>estimated first</u> for fewer number of MF year classes.
 - Then interpolated to cover original UPG year classes.

Group		Genotypes		
			22.11	23.06
1	hf	domestic	3730	3857
2	hf	foreign	52	56
3	aa	domestic	3426	3716
4	aa	foreign	78	77
5	ch	domestic	2894	3118
6	ch	foreign	88	94
7	li	domestic	1841	1987
8	li	foreign	70	74
9	si	domestic	2124	2275
10	si	foreign	77	88
12	ot	*	1362	1594
			15744	17494



- Genomic data (currently):
 - ► Number of genotypes: 17494.
 - Most are domestic purebreds.
 - Foreign groups have far less genotypes.
- Not enough genotypes to match 115 UPG:
 - Solution: MF relations estimated first for fewer number of MF year classes.
 - Then interpolated to cover original UPG year classes.

- Genomic data (currently):
 - ► Number of genotypes: 17494.
 - Most are domestic purebreds.
 - Foreign groups have far less genotypes.
- Not enough genotypes to match 115 UPG:
 - Solution: MF relations estimated first for fewer number of MF year classes.
 - Then interpolated to cover original UPG year classes.

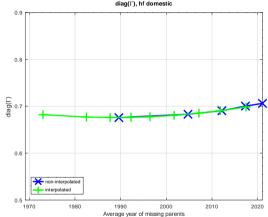


Combined beef+dairy Γ matrix

Allele frequencies of beef breeds were augmented with allele frequencies of **dairy breeds** from other in-house projects:

- Combined $\underline{\Gamma}$ matrix calculated from allele frequencies of common markers.
- Number of common markers:

	Original	Common	
	-	Beef	RDC+FIC
Beef	51809		
RDC+FIC	46914	43921	
Holstein	46342	43326	45823

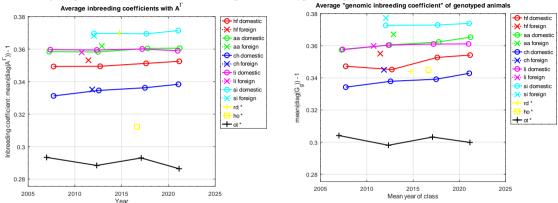

Interbull 2023, Aug. 26, 2023 © Natural Resource Institute Finland

Interpolation of Γ matrix

- Γ matrix was further **interpolated** to cover original UPG year classes.
- Here using two dimensional **bilinear fit** over years x and y of each breed group pair i and j:

$$\widehat{\Gamma}_{i,j}(x,y) = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a_{i,j} & b_{i,j} \\ b_{j,i} & c_{i,j} \end{bmatrix} \begin{bmatrix} y \\ 1 \end{bmatrix}$$

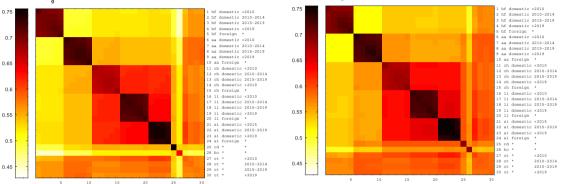
 Example image (diagonal of Γ): Domestic Hereford had 5 MF year classes estimated that were further interpolated to match original 9 UPG.



Interpolated Γ matrix was verified by comparing Γ matrix adjusted pedigree relationships A^{Γ} with genomic relations for genotyped animals:

- Inbreeding levels.
- Average within and across breed group relations.

Verifying Γ matrix: Inbreeding levels (genotyped)



- Average inbreeding coefficients of A^{Γ} for genotyped animals (left).
- Average "genomic inbreeding" of genotyped animals (right).
- Breed groups in the same ("inbreeding") order and overall quite close match.

Verifying Γ matrix: Average breed group relations for genotyped Mean G matrix element by group (min. 20 genotyped)

Mean A matrix element by group (min. 20 genotyped)

- Average within and across breed group A^{Γ} relations (left) for genotyped.
- Average **denomic relations** for genotyped animals (right).
- Pedigree relations with Γ are very close to genomic. Largest (avg.) diff: 0.020.

Conclusions

- Metafounder concept applied to Finnish multibreed beef evaluation.
- Metafounder relations estimated from genomic information:
 - ► First estimated for fewer number of metafounder year classes.
 - ► Then interpolated to cover original unknown parent groups.
- Results verified by comparing metafounder adjusted pedigree relations with genomic relations for genotyped animals.
 - ► On average very close.
- Validation (Timo Pitkänen's presentation later in this session): Metafounder ssGBLUP slightly better than UPG ssGBLUP.

Thanks!

© Natural Resources Institute Finland

