

Report of the Genomic Reliability Calculation working group

Zengting Liu On behalf of all members of the WG

12

- Members of the Working Group
 - Paul VanRaden (USDA)
 - Jeremie Vandenplas (Univ. Wageningen, NLD), Herwin Eding (CRV, NLD)
 - Ismo Strandén and Martin Lidauer (Luke, Finland)
 - Katrine Haugaard (Interbull center)
 - · Zengting Liu (vit, DEU) as chair of the working group

Activity since the Technical Workshop in Rome

Zoom meeting on 26 July, 2023

2

- Ismo Strandén, Katrine Haugaard, and Zengting Liu
- How to improve the speed and reduce RAM usage of snp_blup_rel for extremely large reference population like DEU HOL
- Zoom meeting on 02 August, 2023
 - Paul VanRaden, Jeremie Vandenplas, Katrine Haugaard, and Zengting Liu
 - Jeremie informed us of his work on GREL development
 - Report on an application using German test-day and conformation data
- Katrine distributed two minutes to all members on 04 Aug 2023

The Interbull genomic reliability method

- Interbull Genomic Reliability Working Group developed the method (Liu et al. 2017)
 - Goal: Make national genomic reliabilities **comparable** across countries
- Applicable for the single-step model
- Genomic reliability changes fully correlated with the changes in GEBV variance

Features of the Interbull genomic reliability method (1)

- Main features of the Interbull genomic reliability method (Liu et al. 2017, Interbull Bulletin 51)
 - Genotype data treated as an additional source of information contributing to total reliability
 - Keep using traditional reliability methods for conventional part of single-step model
 - a random regression test-day model for milk production and somatic cell scores
 - a maternal-effect animal model for calving traits
 - a multi-parity, multi-trait animal model for fertility traits
 - Include young animals and all genotyped animals

Features of the Interbull genomic reliability method (2)

- Main features of the Interbull genomic reliability method
 - Consider genomic relationship among **ALL** genotyped animals
 - DGV reliabilities of young candidates depend on relationship to reference animals
 - No longer approximating DGV reliabilities for young candidates (Liu et al. 2010, Wiggans & VanRaden, 2010)
 - By applying the SNP BLUP model via the efficient Software snp_blup_rel (Strandén et al., LUKE, Finland)
 - Allow to run multiple 'single traits' simultaneously
 - High efficiency of the software for extremely large data set with > 1 million genotyped animals

Features of the Interbull genomic reliability method (3)

- Main features of the Interbull genomic reliability method
 - High theoretical DGV reliability level with extremely large reference population
 - Build-in step for genomic reliability validation
 - Adjusting genomic reliabilities based on Interbull GEBV test (VanRaden & O'Connell, 2018)
 - Exp(GREL_change) = Var(GEBV_{later} GEBV_{early}) / genetic variance

= [Var(GEBV_{later}) – Var(GEBV_{early})] / genetic variance

• Avoiding too high GREL in case of extremely large reference population

Test scenarios of selecting equidistant SNP markers (April 2021 data)

TEST SCENARIOS Equally-spaced SNP markers selected	No. SNP markers	Total run time (minutes)	Peak RAM (Gb)	Comments
All SNP markers selected (RELall)	45,613	215	88	
Every 2 SNP markers (RELevery2)	22,807	96	42	executed on the same server
Every 3 SNP markers (RELevery3)	15,205	71	28	
Every 4 SNP markers (RELevery4)	11,404	60	21	
Every 5 SNP markers (RELevery5)	9,123	55	18	
Every 10 SNP markers (RELevery10)	4,562	47	10	

Total # genotyped animals: 947,637

10 cores used

Regression of SNP reliabilities of the base scenario

RELall = b0 + b1 * RELeveryx for genotyped animals born after 2020 (April 2021 evaluation)

06 September 2023

Page 9

Summary and conclusions

- Comparable national genomic reliabilities by implementing the Interbull method
 - For a new model implementation or a major model update:
 - Calculate exact DGV reliabilities via the snp_blup_rel provided by Luke
 - Adjust genomic reliability level using GEBV test results
 - For routine single-step evaluation with computing resources limitation
 - A constant genomic EDC gain is a good alternative for faster calculation
 - Another option is to reduce the number of SNP markers to 15,000

Summary and conclusions (II)

- R&D projects by the Interbull genomic reliability method working group
 - Consider the residual polygenic effect in DGV reliability calculation
 - Multi-trait models at every step of the reliability calculation

Thank you for your attention!

Thanks to the members of Interbull GREL working group!

IT-Solutions for Animal Production

06 September 2023

Page 12