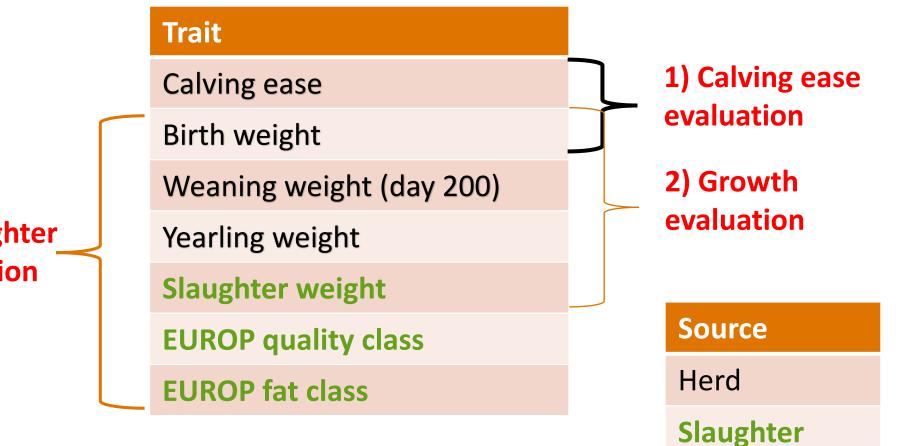
Multibreed single-step genomic evaluation model for Finnish beef cattle

Timo Pitkänen, Anna-Maria Leino, Matti Taskinen, Esa Mäntysaari, Ismo Strandén

Interbull 2023, Aug. 26, 2023


Starting point of the project

- Existing **Single breed (SB)** evaluation models for **Angus, Charolais, Hereford, Limousin**, and **Simmental.**
- Separate evaluations for slaughter, growth, and calving -trait groups within breed.
- Same model effects in all breeds.
- Breed specific variance components.
- No genomic information were used in the existing evaluation
- No observations from F1 crosses can be used
- Evaluation of breed crosses not optimal

Traits and evaluations, three trait groups:

Breed specific heritabilities

3) Slaughter_ evaluation

house

Multibreed Single-Step Model was built in two steps

Multibreed pedigree BLUP (PBLUP) evaluation model¹

- Single breed models used as base.
- Unknown parent groups (**UPG**) in the pedigree.

Multibreed ssGBLUP Metafounder (MF) evaluation model

- Multibreed PBLUP model as base.
- Genomic relationships within and across breeds were included.
- UPG groups replaced by metafounders (Matti Taskinen's presentation)
- Residual polygenic proportion 30 %.

¹ Pitkänen T, et al. 2021. <u>Towards genomics in Finnish beef cattle</u>. Interbull Bulletin 56.

Development goals for MB evaluation model

- All animals included, also pedigree, genotypes, and observations of the F1 crosses.
- Logical differences between **breeds** in **breeding values**.
- High correlation within breed on EBVs between
 Multi- and Single Breed evaluations for purebred animals.
- Breed proportions of **main breeds** estimated for each animal
- For each animal, specific variance components based on individual's **breed proportions** were applied .

Changes compared to SB model

- Observations from F1 animals were included.
- Model of heterosis effects.
- Full Finnish pedigree instead of limited "beef pedigree" from routine evaluation.
 - Breed proportions of 5 main breeds and "other breeds" estimated from pedigree and rounded to closest quarter (25%).
 - SB model used sire's breed as a breed of offspring.
 - More accurate inbreeding coefficients, UPG (and MF) definitions include breed.
- Breed interaction in fixed effects.

Heterosis and recombination in the models

Heterosis

• **Total heterosis** (of the 7 breeds in the evaluation) and **heterosis coefficients** for the most common 10 breed crosses included in the model, 11 parameters for each trait.

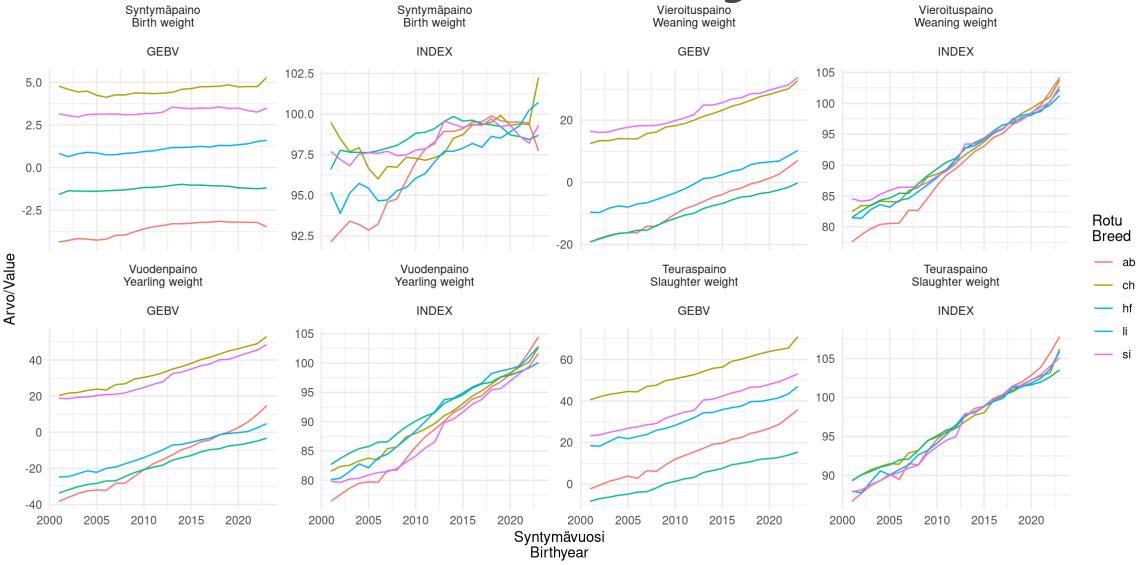
Recombination

• After examining different alternatives we decided to include only the **total recombination loss** in to the model, i.e., 1 effect for each trait.

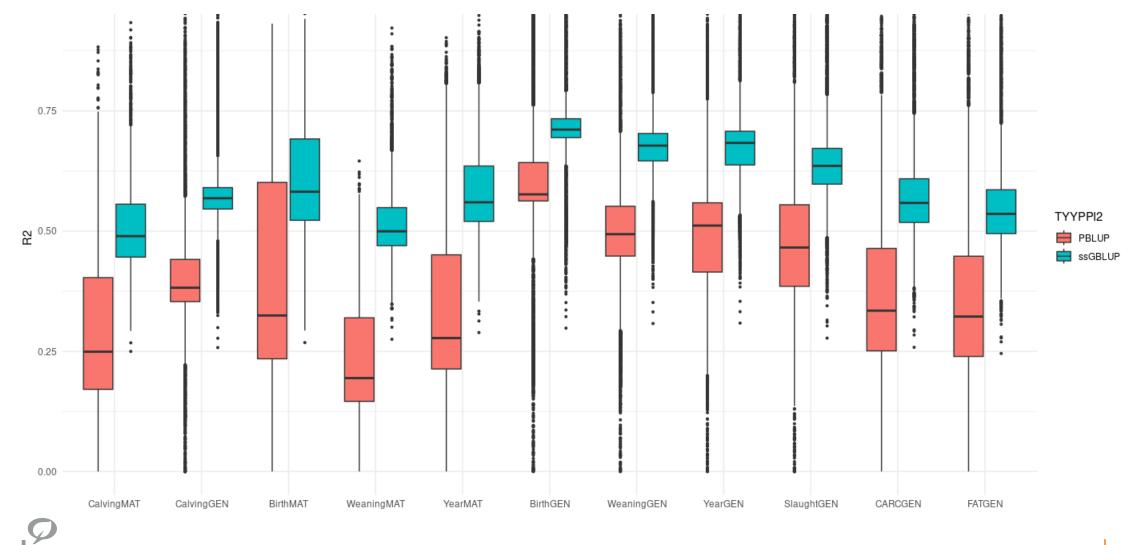
For all three evaluations, heterosis and recombination is modelled in the same way.

Number of animals with observations and genotyped animals by breed

Breed	Animals with at least one observation	Genotyped, r				
Aberdeen Angus	59 973	3 796				
Charolais	70 601	3 212				
Hereford	108 865	3 917				
Limousin	63 876	2 061				
Simmental	37 227	2 363				
OTHER/CROSS	206 019	2 145				
TOTAL	546 561	17 494				

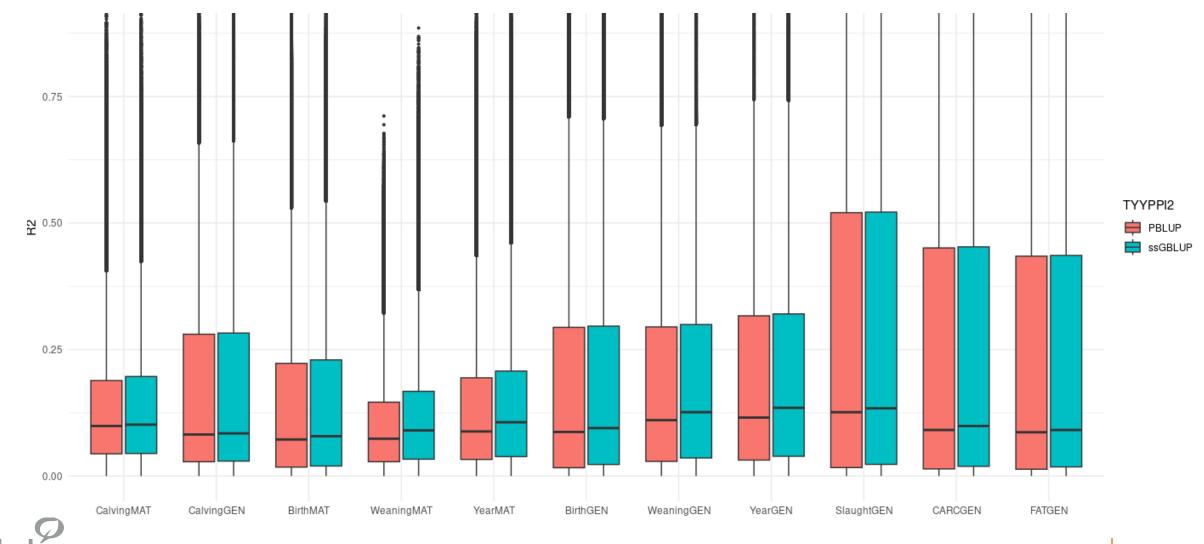


Results


- **GEBV**s and standardised **indices** compared between breeds.
- Reliabilities (R²) of GEBVs² and EBVs compared between PBLUP and ssGBLUP for genotyped and non-genotyped animals
- Validation results of MB PBLUP model and MB ssGBLUP model

²Gao, Hongding, et al. 2023. <u>A computationally efficient method for approximating reliabilities in large-scale single-step genomic prediction</u>. Genetics Selection Evolution 55 1: 14 p.

Trends of GEBVs and indices for weight traits



Model R² for genotyped animals in PBLUP and ssGBLUP

C ONATURAL RESOURCES INSTITUTE FINLAND

Model R² for NON -genotyped animals in PBLUP and ssGBLUP

Ke ©NATURAL RESOURCES INSTITUTE FINLAND

Validation

- For the validation results for **1 year** data cut is presented.
- All observations of a validation animal were removed from the reduced data, if animal had at least one observation in data cut window.
 - I.e. if a slaughter weight was to be removed, also birth, weaning, and yearling weights were removed, even they were observed outside of the cut window.
 - => No own observations in reduced data.
- Validations separately for traditional EBV and single step models:
 - Full (G)EBV vs reduced (G)EBV, (Legarra-Reverter)
 - Full data YD vs reduced data (G)EBV. (cross validation)
- Results for **bulls and cows together**

Validations: correlations and accuracy, 1 year data cut, genotyped animals, PBLUP and ssGBLUP compared

Breed		Birth weight		:	200-d weight			:	365-d weight				Slaughter weight				Europ carcass quality			Europ carcass fat		
.egarra-l	Reverter	correla	ation of	BV betwe	en full and	reduc	ed data	, 1-year cu	ıt													
		change,				change,						change,	change,			change,					change,	
	n	ebv	gebv	%	n	ebv	gebv	%	n	ebv	gebv	%	n	ebv	gebv	%	ebv	gebv	%	ebv	gebv	%
AN	1103	0,70	0,82	17	1133	0,69	0,80	16	1133	0,74	0,83	12	1152	0,62	0,78	26	0,64	0,8	25	0,63	0,83	32
ΉA	687	0,63	0,77	22	700	0,78	0,84	8	700	0,77	0,85	10	714	0,74	0,86	16	0,79	0,91	15	0,77	0,90	17
IER	937	0,74	0,88	19	844	0,66	0,83	26	844	0,68	0,84	24	865	0,62	0,81	31	0,70	0,87	24	0,71	0,89	25
IM	297	0,70	0,80	14	297	0,54	0,65	20	297	0,59	0,70	19	306	0,42	0,65	55	0,63	0,85	35	0,68	0,84	24
IM	647	0,83	0,89	7	647	0,78	0,83	6	647	0,83	0,87	5	692	0,71	0,84	18	0,76	0,89	17	0,69	0,83	20
ross-va	lidation	correla	tion bet	ween full	data YD an	d redu	uced dat	a BV, 1-ye	ear cut													
AN	1103	0,35	0,39	11	633	0,38	0,43	13	1070	0,23	0,29	26	345	0,35	0,35	0	0,2	0,2	0	0,09	0,09	0
HA	687	0,26	0,32	23	389	0,32	0,36	13	583	0,31	0,31	0	197	0,38	0,38	0	0,36	0,37	3	0,3	0,31	3
ER	937	0,39	0,51	31	646	0,27	0,35	30	919	0,2	0,26	30	209	0,48	0,48	0	0,15	0,16	7	0,32	0,33	3
М	292	0,28	0,33	18	142	0,1	0,12	20	271	0	0	0	73	0,16	0,16	0	0,36	0,37	3	0,62	0,62	0
IM	643	0,47	0,49	4	304	0,35	0,37	6	595	0,31	0,31	0	193	0,22	0,22	0	0,13	0,13	0	0,19	0,20	5

UKE ©NATURAL RESOURCES INSTITUTE FINLAND

Conclusions and implementation

Reliabilities for genotyped animals clearly **higher** compared to non-genotyped.

- ssGBLUP model gave mainly the same or better validation results than PBLUP model.
- Also **MF ssGBLUP** slightly **better** than **UPG ssGBLUP** .

First official multi-breed ssGBLUP evaluations were published March 2023

• Published indices were standardized within breed.

References

- 1. Pitkänen T, et al. 2021. Towards genomics in Finnish beef cattle. Interbull Bulletin 56.
- 2. Gao, Hongding, et al. 2023. <u>A computationally efficient method for approximating reliabilities in large-scale single-step genomic prediction</u>. Genetics Selection Evolution 55 1: 14 p.