


### Development of Methane Efficiency Evaluations for Canadian Holsteins

B. Van Doormaal<sup>1</sup>, Hinayah R. Oliveira<sup>1,2</sup>, Saranya Narayana<sup>1</sup>, Allison Fleming<sup>1</sup>, Hannah Sweett<sup>1</sup>, Francesca Malchiodi<sup>4</sup>, Janusz Jamrozik<sup>1,3</sup>, Gerrit Kistemaker<sup>1</sup>, Peter Sullivan<sup>1</sup> and Filippo Miglior<sup>1,3</sup>
 <sup>1</sup>Lactanet Canada, Guelph, ON, Canada, <sup>2</sup>Purdue University, West Lafayette, IN, <sup>3</sup>University of Guelph, Guelph, ON, Canada, <sup>4</sup>Semex, Guelph, ON, Canada



#### Lactanet's Genetic Toolbox



#### UNIVERSITY FGUELPH



#### **Collected Methane**

 Collected from the University of Guelph and University of Alberta under two international projects:







Lactane

- Both herds used the GreenFeed system (C-Lock Inc., Rapid City, SD)
- Average CH4 production (g/d) was recorded multiple times per day for at least 5 consecutive days, mainly in first lactation cows
- End result: Weekly average of daily CH4 production

# CH<sub>4</sub> Analysis at University of Guelph

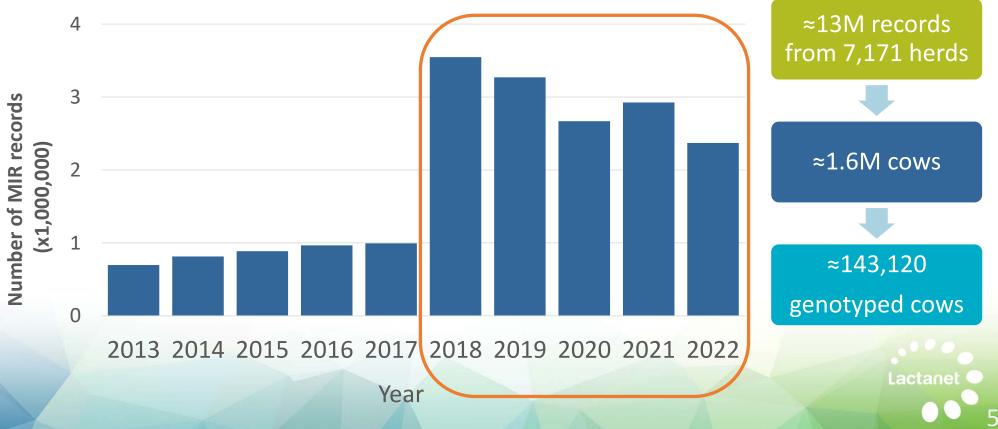
#### A Pivotal Result

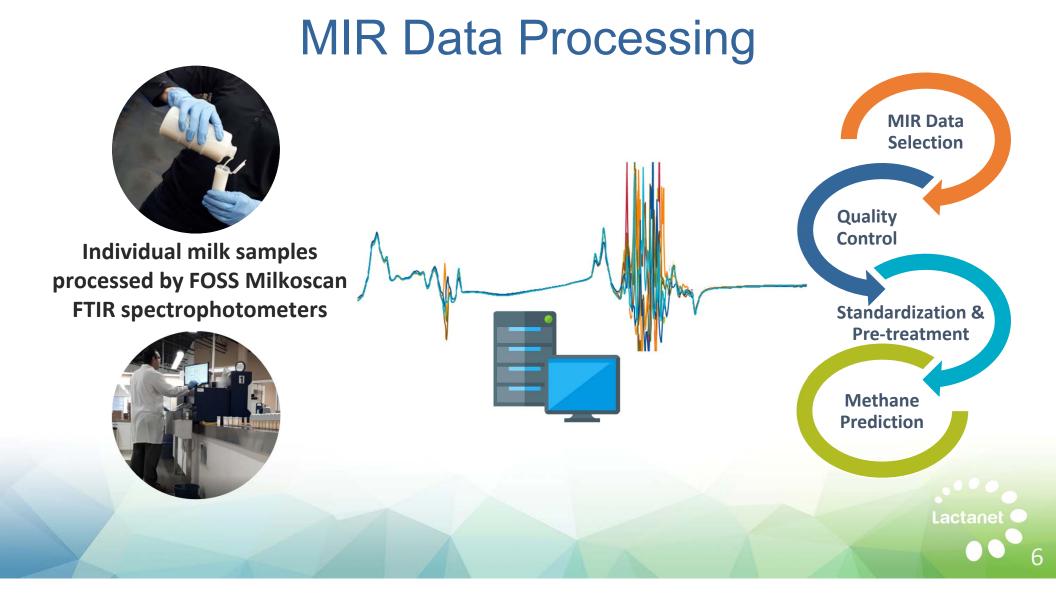
- Research led by Flavio Schenkel, Saeed Shadpour and Christine Baes
- Close involvement of Filippo Miglior, Lactanet's Senior Advisor for Genetic Strategic Initiatives
- A cow's milk MIR data can be used as a good predictor of its methane production



J. Dairy Sci. 105:8272–8285
 https://doi.org/10.3168/jds.2021-21176
 © 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association<sup>®</sup>. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

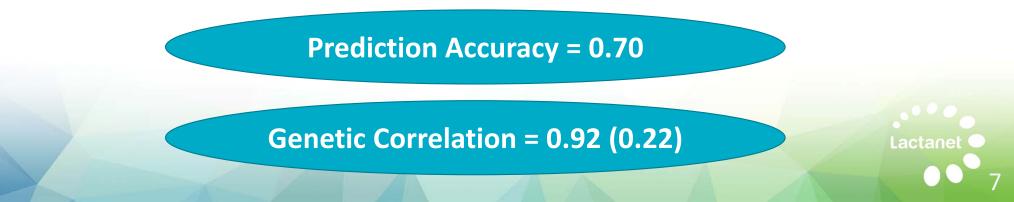
Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks


Saeed Shadpour,<sup>1</sup> <sup>©</sup> Tatiane C. S. Chud,<sup>1</sup> <sup>©</sup> Dagnachew Hailemariam,<sup>2</sup> <sup>©</sup> Graham Plastow,<sup>2</sup> <sup>©</sup> Hinayah R. Oliveira,<sup>1</sup> <sup>©</sup> Paul Stothard,<sup>2</sup> <sup>©</sup> Jan Lassen,<sup>3</sup> <sup>©</sup> Filippo Miglior,<sup>1,4</sup> <sup>©</sup> Christine F. Baes,<sup>1</sup> <sup>©</sup> Dan Tulpan,<sup>1</sup> <sup>©</sup> and Flavio S. Schenkel<sup>1</sup>\* <sup>©</sup> <sup>1</sup>Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

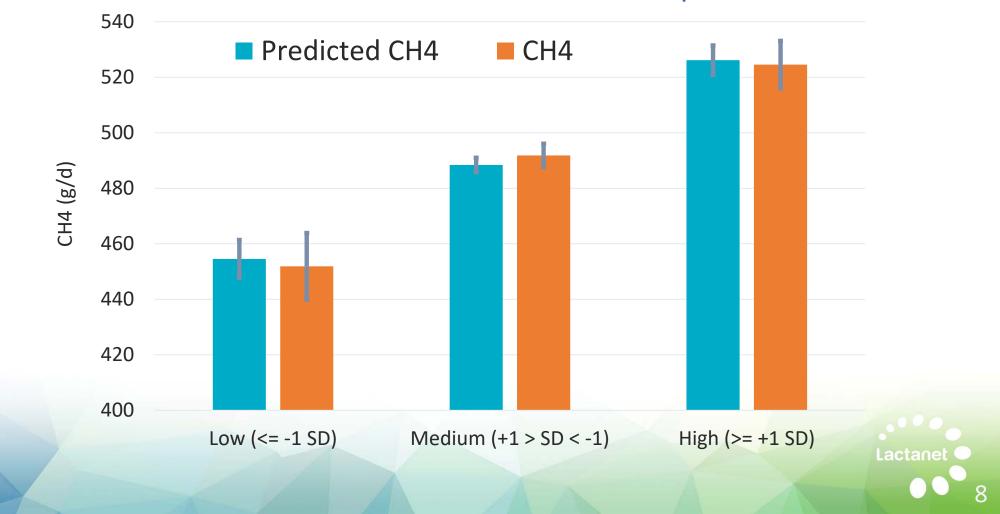

<sup>2</sup>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
<sup>3</sup>Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, 8830, Denmark
<sup>4</sup>Lactanet Canada, Guelph, Ontario, N1K 1E5, Canada



## Milk MIR Investment by Lactanet


- Great potential and availability
- Milk MIR data on 90% of milk recorded cows since 2018

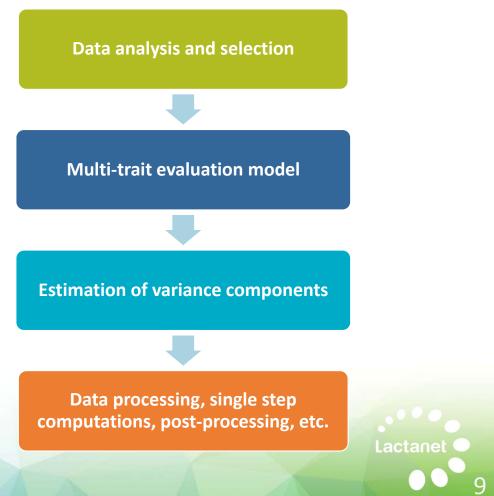





## **Predicting Methane**

- MultiLayer Perceptron Artificial Neural Network based on Bayesian regularization model
- 241 MIR spectral datapoints used as input predictors (excluded uninformative and water associated regions)
- Input was weekly average of daily methane production from 496 first lactation cows in two herds




#### Average Predicted and Collected CH<sub>4</sub> by GEBV Class



## **Genomic Evaluation for Methane Efficiency**



Lactanet and Semex collaborated on the development of a new, single step genomic evaluation system



## Data Used for Genetic Evaluation (April 2023)

- First lactation Holsteins from 6,128 herds
- Between 120 and 185 DIM

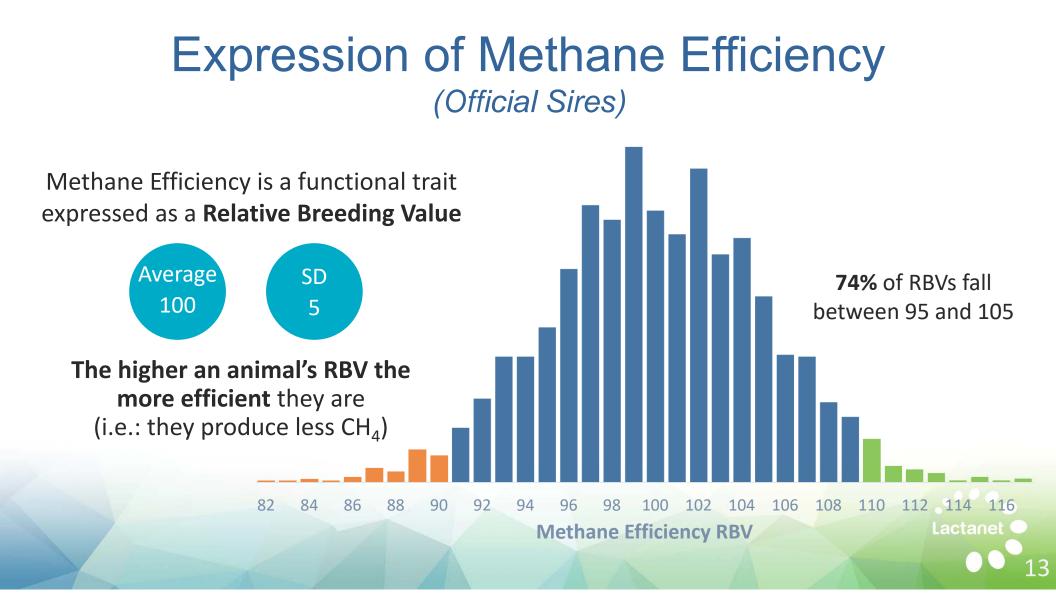
| Records | 773,743 | Genotyped Animals | 134,963 |
|---------|---------|-------------------|---------|
| Cows    | 541,565 | Genotyped Cows    | 68,138  |
| Sires   | 10,765  | Genotyped Sires   | 7,921   |



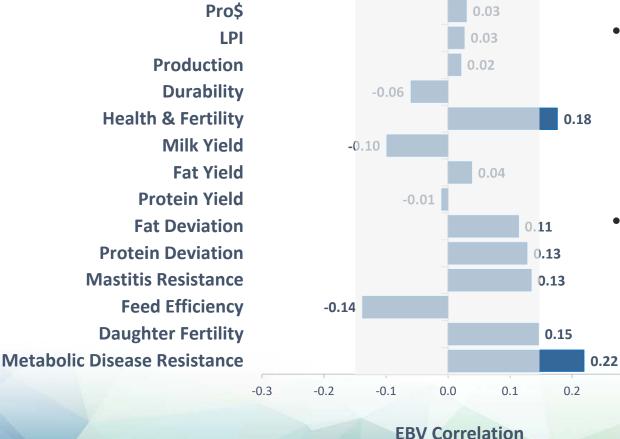
# **Genomic Evaluation for Methane Efficiency**

- Single-step four-trait Animal Model (using MiX99)
  - Predicted Methane (CH<sub>4</sub>, g/d), Milk (kg/d), Fat (kg/d), Protein (kg/d)
  - Fixed: Age at calving, DIM, Year-Season of calving
  - Random: Herd-Test-Date, Permanent Environment, Animal

|                           | Predicted CH <sub>4</sub> | Milk Yield                              | Fat Yield | <b>Protein Yield</b> |
|---------------------------|---------------------------|-----------------------------------------|-----------|----------------------|
| Predicted CH <sub>4</sub> | 0.23                      | -0.13                                   | 0.38      | -0.11                |
| Milk Yield                | -0.06                     | 0.38                                    | 0.48      | 0.83                 |
| Fat Yield                 | -0.18                     | 0.66                                    | 0.27      | 0.71                 |
| Protein Yield             | 0.01                      | 0.90                                    | 0.74      | 0.28                 |
| eritabilities on diagonal |                           | ns above diagonal,<br>ximated SE are <0 |           | ations below diago   |


# **Genomic Evaluation for Methane Efficiency**

- Methane Efficiency (ME):
  - Calculated via linear regression (recursive re-parameterization) using GEBV for Predicted CH<sub>4</sub> and each of Milk, Fat and Protein yields


|                           | Milk Yield | Fat Yield | <b>Protein Yield</b> |
|---------------------------|------------|-----------|----------------------|
| Predicted CH <sub>4</sub> | -0.13      | 0.38      | -0.11                |
| Methane Efficiency        | 0.00       | 0.00      | 0.00                 |

Methane Efficiency helps to reduce the methane production of the cow and herd without impacting production levels

Lactane



## Methane Efficiency is Truly a New Trait



 Methane Efficiency does not have a significant unfavorable correlation with any other evaluated trait

 Selection for Feed Efficiency does not also improve Methane Efficiency

0.3

 Both traits are independent of production yields

Lactanel

## Interpretation

#### Reduce CH<sub>4</sub> production by selecting for higher Methane Efficiency without impacting production traits

5-point ↑ in a sire's RBV for ME, daughters are expected to produce 3 kg less CH<sub>4</sub> per year

1.5% decrease in CH<sub>4</sub> emissions per cow per year

Herd owners selecting for ME can achieve 20-30% reduction in CH<sub>4</sub> emissions from their herd by 2050

Lactanet

# Summary

- Lactanet has a portfolio of traits to genetically select for improved environmental sustainability
- Predicting CH<sub>4</sub> using milk MIR data has proven to be a key and rapid alternative to using collected CH<sub>4</sub>
- Methane Efficiency allows selection for reduced CH<sub>4</sub> emissions without impacting production levels
- Lactanet is investing and (co)leading several research projects to help achieve the "Dairy Net Zero" goal



#### A Team Effort

