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PHILOSOPHY OF PRESENTATIO




TRAITS NOT WELL UNDERSTOOD (ME
ND PLANT BREEDING

DO STUFF (PREDICT-SELECT), SEEMINGLY SUCCES

"Would you refuse your dinner
because you do not understand
the digestive system?”

quote by British mathematician in
“The emperor of the maladies: a biography
of cancer”,2010, by
Siddhartha Mujkherjee

PRE-DINNER: CAN ARGUE FROM PRE-CONCEIVED NOTIONS
POST-DINNER: CAN SAY WHETHER DINNER WAS GOOD OR BAD




"Clearly hypothesis testing and estimation as stressed in almost all statistics books involve
parameters, . .this presumes the truth of the model and imparts an mappropriate existential
meaning to an index or parameter. . .inferring about observables is more pertinent since they can

occur and be validated to o degree that is not possible for parameters”,

Monographs
on Statistics and
Applied Probability 55

Heritability: unobservable Predictive
A Inference:
Breeding values: unobservable e e

Seymour Geisser

Prediction: statement about something yet-to-
be observed, eventually observable

henotypes and functions thereof: observable




1. DISTRIBUTIONS OF ERRORS
OF PREDICTION

(least-squares formulae but concepts carry to
other methods)




infinite number of test sets, conditionally on train
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ampling over an infinite number of test and train sets, conditionally on genotyp
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It is unreasonable to dismiss prediction bias in more general settings because fi;.; 7 Xeest3 and phygin 7
Xirain3. Suppose now that the model is "wrong", that n¢yqin = Ntest. and that Xyesr = Xypain = X. In such

a situation Hicst train = Hirain,train. and (20) can be written as

Var-bias
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e number of test and train sets, AN

Observe that (22) gives the expected mean-squared error of prediction, conditionally on the realized values
of X. However, in genome-enabled prediction matrix X has some distribution F' that reflects linkage or linkage
disequilibrium relationships (creating correlations among columns) as well as how genotypes are distributed
in the target population, for example, a Hardy-Weinberg distribution. If the prediction model is to be applied
repeatedly to a population, random variation of X must be accommodated. The fully unconditional predictive

mean-squared error is then

1 Ntrain
E(PMSE) = o ElZ(S? +(1+ntpl >og
rain =1 rain
1
- Nirai E[("”testiH”l’train)l (I’l'testiHbu’train”
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is H=X (X'X) ' X'. Letting £ (H) = H
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The preceding implies that the contribution of bias (first part of the expression above) is a function of the
Var-bias unknown population means and of the distribution of genotypes in the population. Perhaps an elaborate
trade off model can paliate the adverse impact of bias on predictive performance, but the second part of the expression
indicates that a highly parameterized model will produce predictions with larger variance than a "smaller"
model. The upper limit of p is nypqin (otherwise, the OLS estimator would not be unique). so the prediction
error variance can almost double the residual variance in a model with many parameters. Unfortunately,
the impact of model complexity on prediction bias is impossible to quantity in the absence of mechanistic

knowledge.



2. DATA: PURE RANDOMNESS



599 LINES OF WHEAT PLANTED IN 3 ENVIRONMENTS
GENOTYPED WITH DaRT MARKERS. TRAIT: GRAIN YIELD
THINK OF ENVIRONMENT AS “COUNTRY”
APPROXIMATE MULTIVARIATE ML: algorithm did not
guarantee convergence inside of parameter space

=» estimates “bent” to attain PD

=»residual correlations between “countries” were 0.

> h2
[1] 0.5005951 0.4506505 0.4252388

> GENCOR
1] L2] 3]

1,] 1.0000000 -0.6379026 -0.5016693

2,]-0.6379026 1.0000000 -0.4210596

3,]-0.5016693 -0.4210596 1.0000000

IMPORTANT G X E SUGGESTED BY NEGATIVE GENETIC CORRELATIONS

QUESTION: HOW DO WE MEASURE PREDICTION UNCERTAINTY
FROM A SINGLE REALIZATION?




3. PURE RANDOMNESS:
GOODNESS OF FIT



MSE muftiv

fASE muttiv

MSE muftiv
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MSE FIT COUNTRY 1 b=5000
UNI= solid MULTI= dashed
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D ensity
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SMALLER MSE: BETTER FIT
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SMALLER MSE: BETTER FIT n=5000 Bandwidth = 0.005585




Message 1

er” model (MULTI) described data worse (larger
an “smaller” mode(UNI)

igger” model produced more variable results
gle analysis does not inform on variability.

y suggest room for action, but cannot be used as b
ecision

ing emulates a supply of training-testing



4. PURE RANDOMNESS: PREDICTIVE ABILITY
OF UNIVARIATE MODELS

n=599
NTrain = 499
Nrest = 100

500 randomly reconstructed
training-testing sets
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Test
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1.0

0.6

1.2

04 08

MSE Train vs MSE Test
COUNTRY 1

Train

MSE Train vs MSE Test
COUNTRY 2

MSE Train vs MSE Test
COUNTRY 3
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R2 Train vs R2 Test
COUNTRY 1

0.69 0.70 0.71

Train

R2 Train vs R2 Test
COUNTRY 2

0.59 0.70 0.71

Train

R2 Train vs R? Test
COUNTRY 3

0.69

0.70 0.71

-  w
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Message 2

* The closer the fit (MSE train) the poorer the predictions
(MSE test)

* R2in test sets mildly associated with closeness (MSE)
e THE FOLLOWING IS A COMMERCIAL
e R2 (predictive) seldom used in machine learning.

1. It does not reflect bias
2. Gives false idea about reproducibility




CONFERENCE

$él,simplystats ABouT

COURSES INTERVIEWS

! 2 Correlation is not a measure of

reproducibility

POSTED BY RAFAEL IRIZARRY / UNCATEGORIZED

Professor of Biostatistics,
T.H. Chan School of Public Health
Harvard University



Suppose you have collected data from an experiment

X1, X250 Xny

and want to determine if a second experiment replicates these findings

Vi=x1+d1, yo=xo+d>, ... yn=Xn+dn.
For us to claim reproducibility we want the differences

to be as small as possible o1=y1-x1, do=yo-x5,... .dr=yi-x1,

But aren't correlations and distances directly related? Sort of, and this actually
brings up another problem. If the x and y are standardized to have average 0 and g

standard deviation 1 then, yes, correlation and distance are directly related:
La-la Land

1
%dist(a:, y)? = 1 — cor(z, y)

However, if instead x and y have different average values, which would put into

l BRAVEREART ave THE PASSION OF THE CH
9
-
W

question reproducibility, then distance is sensitive to this problem while correlation
is not. If the standard devtiation is 1, the formula is: L oo

Hacksaw
ridge

) HACKSAW
IDGE

rep 2
0 5 10 15 20 25 30

Add one point to uncorrelated data: 0.9>

RV , t
i) = 1+ 3 {avely) - v -cor() EEEEEE

rep 1




URE RANDOMNESS: PREDICTIVE ABILI
F MULTIVARIATE VERSUS UNIVARIATE
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Message 3

“Bigger” model (MULTI) predicted data worse (larger MSE)
than “smaller” mode(UNI)

“Bigger” model captured less variation in test sets
(predictive R2 metric)

MULTI predictions more variable in the predictive MSE sense
and less variable in the predictive R2 sense

Again, resampling emulated supply of training-testing sets,
leading to clear+empirical measures of uncertainty



6. PURE RANDOMNESS: DEALING WITH
PREDICTION “BIAS” VIA THE
ALPHABETA TEST
egression of predictand on prediction)



ALPHA Test UNI (RED) V5 MULTI (BLACK)
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MILILTI

MLILTI

MILILTI

1.2

04 08

1.5
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MULTI IN COUNTRY 1 AND HIGHER IN
RHAPS SOMETHING GOING ON HERE?

BETA Test UNI (RED) VS MULTI (BLACK)
COUNTRY 1
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ND DENSITY SHAPES. 500 RE-SAM

BETA Test UNI (RED) VS MULTI (BLACK)
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/A. CREATING BIAS ARTIFICIALLY

=>» MODEL TRAINED IN POPULATION 1 WITH BEST 499
LINES

=>» POPULATIONS 2 AND 3 WITH 499 RANDOM LINES
=>» UNIVARIATE MODELS+ MULTI-TRAIT MODEL

=» 5000 BOOTSTRAP SAMPLES OF THE TESTING SET
DISTRIBUTION

CAN WE DIAGNOSE SOMETHING FROM THE
DISTRIBUTION OF PREDICTION ERRORS?



Sample Cuantiles Sample Cuantiles

Sample Cuantiles

20 2 4

TEST SET PREDICTION ERRORS
UNIVARIATE COUNTRY 1: RED

T T T T T
-2 -1 0 1 2

Theoretical Quantiles

TEST SET PREDICTION ERRORS
UNIVARIATE COUNTRY 2: BLUE

Theoretical Quantiles

TEST SET PREDICTION ERRORS
UNIVARIATE COUNTRY 3: GREEN

Theoretical Quantiles

Sample Cuantiles Sample Cuartiles

Sample Cuartiles

2 0 2 4

TEST SET PREDICTION ERRORS
MULTIVARIATE COUNTRY 1: RED

Theoretical Quantiles

TEST SET PREDICTION ERRORS
MULTIVARIATE COUNTRY 2: BLUE

Theoretical Quantiles

TEST SET PREDICTION ERRORS
MULTIVARIATE COUNTRY 1: GREEN

-2 -1 0 1 2

Theoretical Quantiles




Message 4

-TRAIT MODEL “IMPROVES” CONFORMITY OF THE
ICTION ERROR DISTRIBUTION WITH GAUSSIAN PROCE
SOME

ST IMPROVEMENT IS FOR POPULATION IN WHICH TRAINI
S OCCURS



MSE test random (red) vs biased sampling (black)
5000 bootstrap samples
UNIVARIATE COUNTRY 1: red
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MSE test random (red) vs biased sampling (black)
2000 bootstrap samples
MULTIVARIATE COUNTRY 1: red
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ALPHA test random (red) vs biased sampling (black)
5000 bootstrap samples
MULTIVARIATE COUNTRY 1: red
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S BIAS: EASIER TO DIAGNOSE IN “BAD HO




Density

Density

Density

n 2 4 6
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BETA test random (red) vs biased sampling (black)
2000 bootstrap samples
MULTIVARIATE COUNTRY 1: red
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BETA test random (blue) vs biased sampling (black)
2000 bootstrap samples
MULTIVARIATE COUNTRY 2: blue
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ES BIAS: EASIER TO DIAGNOSE IN “BAD HOMB




/A. CREATING BIAS ARTIFICIALLY

=>» MODEL TRAINED IN POPULATION 1 WITH WORST 499
LINES

=>» POPULATIONS 2 AND 3 WITH 499 RANDOM LINES

=>» UNIVARIATE MODELS+ MULTI-TRAIT MODEL

=» 5000 BOOTSTRAP SAMPLES OF THE TESTING SET
DISTRIBUTION

CAN WE DIAGNOSE SOMETHING FROM THE
DISTRIBUTION OF PREDICTION ERRORS?



TEST SET PREDICTION ERRORS SEL DOVWN TEST SET PREDICTION ERRORS SEL DOWWN
UNIVARIATE COUNTRY 1: RED MULTIVARIATE COUNTRY 1: RED
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MSE test random (red) vs biased down sampling (black)
5000 bootstrap samples
MULTIVARIATE COUNTRY 1: red
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ALPHA test random (red) vs biased down sampling (black)
5000 bootstrap samples
MULTIVARIATE COUNTRY 1: red
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BETA test random (red) vs biased down sampling (black)
3000 bootstrap samples
MULTIVARIATE COUNTRY 1: red
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POTENTIALLY USEFUL APPROACH: “ROBUST’ REGRESSION
TGBLUP: GENOMIC BLUP WITH t-DISTRIBUTED RESIDUALS
(basic ideas for single trait model presented here)

I. Stranden and D. Gianola. 1998 Attenuating effects of preferential
treatment with Student-# mixed linear models: a simulation study. Genetics,
Selection, Evolution 30:565-583.

I. Stranden and D. Gianola. 1999. Mixed effects linear models with t-
distributions for quantitative genetic analysis: a Bayesian approach. Genetics,
Selection, Evolution 31:; 25-42.

__G. ). M. Rosa, C. R. Padovani and D. Gianola. 2003. Robust linear mixed
models with normal/independent distributions and Bayesian MCMC
implementation. Biometrical Journal 45: 573-590.

G. J. M. Rosa, D. Gianola and C. R. Padovani. 2004. Bayesian longitudinal
data analysis with mixed models and thick-tailed distributions using MCMC.
Journal of Applied Statistics 31, 855-873.






EBIASING PREDICTIO
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Using Iterated Bagging to Debias Regressions

LEO BREIMAN leo @stat.berkeley.edu
Statistics Department, University of California at Berkelev, Berkeley, CA 94720, USA



4 CONCLUSION A

* RESAMPLING USEFUL TO ESTIMATE DISTRIBUTIONS OF PREDICTION
ERRORS

* BOOTSTRAPPING EMULATES DISTRIBUTIONS UNDER NON-RANDOM
SAMPLING

e EXTENSIVE TESTING REQUIRED FOR FIRM DIAGNOSIS

* DO NOT WANT OVER-DIAGNOSIS AND TREATMENT

* DO NOT WANT TO REMAIN PASSIVE IN THE PRESENCE OF PROBLEMS
* MAIN ISSUE IS SCREWY DATA

e ANOTHER PROBLEM IS HOW SCREWY IT IS, AND WHO-WHY
(selection) SCREWED IT!

* ROBUST REGRESSION METHODS TEMPER SCREWY DATA
s DEBIASING METHODS AVAILABLE: PAY VARIANCE PENALTY

* METHODS ARE COMPUTATIONALLY INTENSIVE BUT IS THIS A
SERIOUS ISSUE AT THE TIMES OF MONSTROUS COMPUTERS,
ARTIFICIAL INTELLIGENCE AND DEEP LEARNING?




