

2023 Interbull Annual Meeting, August 26 to 27, Lyon, France

RZPersistenz *Genetic evaluation of persistency in extended lactations*

L. Polman, S. Rensing, J. Heise

Department of Biometrics & Genetic Evaluation (zws@vit.de) IT Solutions for Animal Production (vit) Heinrich-Schröder-Weg 1, 27283 Verden

Leen Polman

- Performed the analyses
- Implemented the results
- Currently on a transalpes hiking tour

Lactation persistency

Persistency = Maintenance of performance (milk, fat, protein) after peak

More and more dairy farmers want to increase the length of the lactation

- Iow HOL calf prizes, risks of calving, less dry periods, easier management, ...
- The goal of RZPersistenz:
 - Allow for selection of animals that are suited to keep high production levels in extended lactations
 - Start after the lactation peak
 - Target trait: persistency in long lactations even well beyond 305 days
- Random-Regression-Test-Day-Model (RRTDM) gives results for DIMs up to 305
 - Average lactation length of complete lactation approx. 355-360

	Ø yield and lactation length*						
Lac.	milk	fat	protein	DIM			
1	9654	385	331	360			
2	10.701	429	371	355			
3	11.137	447	380	356			

* min. 270 DIM & following calving

Knight and Wilde (1993) Cole and Null (2009)

Random-Regression-Modell

 y_{ijklo} is 24-hour test day yield, adjusted for heterogeneous herd variance of the *o*-th test day of lactation *l* of cow *k* h_{il} is fixed effects of the *i*-th herd-test-date x milking-frequency (HTD) for lactation *l* f_{jim} represents the *m*-th regression coefficient for the *j*-th fixed lactation curve of lactation *l* β_{jim} is the *m*-th term of Wilmink function with mit $\beta_{-1}=1$, $\beta_{-2}=d$ und $\beta_{-3}=e^{-0.05d}$ and *d* denoting days in milk (DIM) a_{klm} ; p_{klm} is the *m*-th random regression coefficient of lactation *l* of cow *k* for genetic and permanent environmental effects, respectively b_{klm} the m-th term of the third-order Legendre polynomials with $b_{-1} = 1$, $b_{-2} = \sqrt{3}z$ und $b_{-3} = \frac{1}{2}\sqrt{5}(3z^2 - 1)$ und $z = \frac{(d-5)}{150} - 1$ of lactation *l* of cow *k* e_{ijklm} error effect

$$f(t) = \left[\frac{3\sqrt{5}}{2}\left[\left(\frac{t}{150}\right)^2 - \frac{310t}{150^2} + \left(\frac{155}{150}\right)^2\right] - \frac{\sqrt{5}}{2}\right] \quad a_2 + \sqrt{3}\left(\frac{t - 155}{150}\right) \quad a_1 + a_0$$

Linear slope between two points = Mean daily slope in time Intervall

0.65

0.35

 \rightarrow It's only a weighting between coefficient a_1 and a_2 !

August 27, 2023

5

The concept

6

- How do in principle the polynomials a1 and a2 effect the shape/progression of the curves?
 - Master's thesis by Leen Polman (2021): estimated lactation curves of ca. 5,000 AI bulls from RUW
 - Here, the mean fix lactation curve was added, to get the shape of a lactation curve

The larger the coefficients, the higher persistency in longer lactations \rightarrow how to combine?

Definition of relative EBV for persistency (RZPersistenz)

production index RZM

<u>_</u> S G

based

Weights of relative EBV for persistency analogous to RZM calculation

Heritability (diagonal) and genetic correlations (above diagonal)

	L1_my	L2_my	L3_my				
L1_my	0.15	0.84	0.80				
L2_my		0.20	0.98				
L3_my			0.18		cu	mulated h ²	
	L1_fy	L2_fy	L3_fy		h ²		RZPersistenz
L1_fy	0.09	0.85	0.77	Milk kg	0.417		0.040
L2_fy		0.11	0.95	Fat kg	0.323		0.343
L3_fy			0.11	Protein kg	0.353		
	L1_py	L2_py	L3_py				
L1_py	0.12	0.84	0.77				
L2_py		0.16	0.98				
L3_py			0.15				

EBV correlations RZPersistenz to other relative EBVs

- gEBV correlations based on German females born 2022 from herd genotyping (EBV Dec. 2022)
 - Large number, represents variation in population → realistic genetic correlation

Persistency gEBV correlation to	Trait	Holstein females (born 2022)	
No. of animals		105'557	
RZM	yield	0.24	
RZN	longevity	0.18	
RZE	conformation	0.06	
RZR	fertility	-0.06	
RZGesund	health	0.12	
RZKm	calving, mat.	0.03	
RZKd	calving, dir.	0.09	
RZKälberfit	calf survival	0.00	

- Slightly positive correlations to yield index and longevity
 - and therefore, also to RZG (TMI)
- Correlations to other components of RZG close to zero

10

Phenotypic lactation curves of animals with high/low RZPersistenz

- Daughters of Holstein AI bulls (Top/Bottom 25% RZPersistenz)
 - ca. 1.000 AI bulls born 2013-2016
- Mean phenotypic curves of daughters
 - approx. 200.000 daughters each 25% group
 - Top 25%: Ø 117,6 RZPersistenz
 - Bottom 25%: \emptyset 94,6 RZPersistenz

Reliability and variation of genomic RZPersistenz

- Reference population for RZPersistenz is smaller than for milk yield traits and cell count
 - Only animals in German RRTDM have information on lactation curve available
 - no information on lactation curve for international AI bulls converted by Interbull
 - only cows in reference population if phenotypic information in the second part of lactation is available
- \rightarrow Reliability of genomic RZPersistenz 60%

gRZPersistenz of German Holstein females born 2022 from herd genotyping (gEBV Dec. 2022; N = 105.557)

RZPersistenz: summary and outlook

- Definition based on ratio between genetic legendre coefficients from RRTDM
 - except the intercept
 - in the future, the RRTDM will be revised to include DIMs up to 400
- Slightly positive correlations to yield index and longevity
 - Therefore, slightly positive genetic trend for persistency in the past
 - Correlations to other components of RZG (TMI) close to zero
- Only farmers with focus on extended lactations should consider the RZPersistenz

The longer the targeted lactation length is, the more the consideration of the RZPersistenz makes sense

Thank you for your attention!

