A new Holstein Haplotype affecting calf survival

S. Kipp¹, D. Segelke¹, S. Schierenbeck¹, F. Reinhardt¹, R Reents¹, C. Wurmser², H. Pausch², R. Fries², G. Thaller³, J. Tetens³, J. Pott⁴, M. Piechotta⁵, W. Grünberg⁵

¹ Vereinigte Informationssysteme Tierhaltung w.V. (vit), 27283 Verden, Germany
² Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354 Freising, Germany
³ Lehrstuhl fuer Tierzucht, Christian-Albrechts-Universitaet, 24098 Kiel, Germany
⁴ Masterrind GmbH, 27283 Verden, Germany
⁵ Klinik für Rinder, Stiftung Tierarztliche Hochschule Hannover, 30173 Hannover, Germany

Sandra.kipp@vit.de
Background

- Reports from German industry
- Calves with chronic diarrhea
 - No response to any treatment
- Test on pathogens: negative
- Secondary diseases like pneumonia and oedemas
- Underdevelopment (in body weight)
- Died between 3 weeks and 6 months after birth
- Identical twins out of split embryo, raised on two farms, revealed identical phenotype

- Pedigree analyses revealed common ancestors
- Indication of genetic background
Pathological examination

- Three animals
 - „Normal“ at birth
 - Age of death: 1-5 months
 - Weight at death: 36.5 – 59 kg
 - Normal height
- No apparent cause of death
- Most probably affected calves starved
- Pathological findings: All fat reserves are used up including the fat of the spinal cord

⇒ Indication of disorder of fat metabolism
Blood analyses

- Parameter of fat metabolism are conspicuous

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.17</td>
<td>0.1</td>
<td><0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control 1</td>
<td>1.53</td>
<td>1.36</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Control 2</td>
<td>2.46</td>
<td>1.85</td>
<td>0.68</td>
<td>0.40</td>
</tr>
<tr>
<td>Control 3</td>
<td>2.21</td>
<td>1.84</td>
<td>0.43</td>
<td>0.36</td>
</tr>
<tr>
<td>Control 4</td>
<td>2.5</td>
<td>2.38</td>
<td>0.33</td>
<td>0.29</td>
</tr>
</tbody>
</table>

- Affected animals show significantly reduced values of lipid blood levels
- Also reduced values for control 1
 ➜ Codominant inheritance?
Identification of disease-associated region

- Genome-wide association study based on Illumina 54K SNP-Chip genotypes
 - 23 cases (common phenotype and died)
 - 11,177 control animals (survived first year of life)
 - Data available from the reporting system in Germany

⇒ strong association on BTA11
Homozygosity mapping BTA 11

- Non-affected animals need to be heterozygous/alternative homozygous

- Affected animals (= cases) must have a common homozygous region within the associated region
Haplotype frequency in population

- Haplotype is identified
- Haplotype analyses reveal
 - 234 homozygous animals (80% dead)
 - 14,093 heterozygous animals (8.7% of all genotyped animals)

Widespread use of carriers’ sperm → Strong increase of frequency
Effect of risk matings

- Increase of frequency since 2000 → high probability of risk matings
- Analysis based on 6.9 million female calf records

After day 30:
association haplotype calf mortality

- mating = carrier x carrier
- carrier x non-carrier
- non-carrier x carrier
- non-carrier x non-carrier
Effect of haplotype on blood cholesterol levels

- Comparing heterozygous carriers (14) versus “free” animals (141)
 - Blood cholesterol levels were routinely measured
 - 50K-SNP-Chip genotypes → information about haplotype status

- Cholesterol level of heterozygous carriers clearly lower (1.65 vs. 2.30)
Economic importance

- ~3,400 homozygous animals born per year in Germany
 - Uniform mating of all bulls
 - Carrier frequency: 8.7 %
 - 1,800,000 Holstein calves born per year in Germany

- 1.3 million Euro loss per year
 - 400€ per calf (value of calf, average lifetime: 85 d, medical treatment)

- Actual loss could be higher
 - Widespread, intensive use of carrier bulls
 - Heterozygous animals → disadvantages in fat metabolism?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.17</td>
<td>0.1</td>
<td><0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Carrier</td>
<td>1.53</td>
<td>1.36</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Control 1</td>
<td>2.46</td>
<td>1.85</td>
<td>0.68</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Homozygous animals alive

Healthy animals

Cases

Approx. 26 animals older >1 year found computed as homozygous for the haplotype

Haplotype test accuracy < 100%
Reasons for homozygous animals alive

- **All died homozygous animals trace back double to Maughlin Storm**
- **Survived homozygous animals got at least one allele from Comestar Laurie Sheik**

→ **Within the identified haplotype there must exist two variants**
 - one carrying the causal mutation, the other not
Identification of causal mutation

Sequence based analyses

- Request of all position in the genome including causal mutation
 - Whole genome re-sequencing

- 43 animals with whole genome re-sequencing data
 - 5 Red dairy cattle
 - 38 Holstein (black and red)
 - 1 affected animal

- Chromosome 11
 - Chromosome including the causal mutation
 - 755,920 variants detected
 - (2303 positions on 54K-SNP-Chip \(\rightarrow\) 0.3%)

\(\rightarrow\) How to pinpoint the causal mutation?
Sequence based analyses (II)

1) BB

Affected animal \(†\)

\(→\) affected animal must be homozygous

2)	BB	AB	AA
Affected animal \(†\) | -- | Remaining 42 animals (Holstein and RDC)

- No carrier (AB) included in German data
- Allele frequency (B) \(≤ 0.045\)

3) Associated homozygous region in the genome

4) Monogenic defect

- Filtering of genic variants

Chromosome 11

- 174,373 variants
- 3,360 variants
- 498 variants
- 20 variants
Sequence based analyses (III)
Collaboration with Technical University Munich

- Access to data of 1000 Bull Genomes Project (Run 4)
 - ~ 1,150 animals re-sequenced
 - 288 Black Holstein animals, 23 Red Holstein animals
 - 37.92 Million variants detected

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>AB</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remaining animals (Holstein and other breeds)</td>
<td>Prominent Storm offspring</td>
<td>Affected animal †</td>
<td></td>
</tr>
</tbody>
</table>

⇒ Potential variants (n=20) could not be confirmed, because …
 - False-positive carriers in Holstein ⇒ do definitely not carry this defect
 - Occurrence in other breeds ⇒ Holstein specific defect
Identification of causal mutation

- Most probably the causal mutation is located in a gap in the reference sequence

- Currently hard to find the causal mutation
 - but new reference sequence announced for 2015/2016
Summary and outlook

- Phenotype: non-curable diarrhea in calves & cholesterol deficiency
 - genetic disposition

- Identified haplotype is clearly associated with calf mortality
 - Results based on complete calf survival data of entire German Holstein population

- Haplotype has high impact on worldwide Holstein population

- Accuracy of haplotype test for prediction of carrier status: 80%
 - Two identical 50K-based haplotypes: affected ↔ healthy

- Causal mutation has not yet been identified

- Improvement of haplotype test
 - More sequence data of ancestors
 - High-density genotyping of ancestors
 - …..
Thank you.

Many thanks to Masterrind for the intensive cooperation and financial support.