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Topics

• Decomposition	of	GEBV
• Convergence,	costs	and	UPGs
• Is	APY	algorithm	for	inversion	of	GRM	sound?
• SNP	selection	and	accuracy

– Causative	SNPs
• Validation,	etc.



Decomposition	of	GEBV	in	Single-step

1 2 3 4 5GEBV wCD w PA w PC w DGV w PI= + + + -
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GEBV	for	young	animals

2 4 5GEBV w PA w DGV w PI= + -
PI=0	if	genotyped	animals	unrelated
PI=PA	if	all	animals	genotyped
PI≈PA	if	parents	genotyped

2 4GEBV w PA w DGV= +If	genotyped	but	
unrelated

PI=0	if	genotyped	unrelated

GEBV DGV»If	genotype	and	parents
genotyped

PA	and	PI	cancel	out



GEBV

GEBV = PAIf	no	genotype
No	phenotype
No	progeny

Little	improvement	with	genomics	if	
animal	not	genotyped

GEBV PC=For	proven	animals Genomics	does	not	matter

1 2 3 4 5GEBV wCD w PA w PC w DGV w PI= + + + -

Output from single-step for MACE:
For bulls: PC (?)
For cows: CD (?)

Extraction	of	components	easy



Convergence	problems	in	single-step
• No	problem	with	some	groups	of	animals	(e.g.,	
broilers	with	3	generations	of	data/pedigree)

• Problems	with	other	species
– Smaller	after	cutting	pedigrees
– Larger	with	UPG

• One	solution:
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A B C D

Compatibility of G and A22

§ Pedigree	same	basis
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Genetic	Group	1

A B C D

Genetic	Group	2

Genetic	Group

Compatibility of G and A22

§ Pedigree	same	basis

§ Genetic	group	/	
common	founder

§ Inbreeding

8



Why	problems	and	solutions

• Incompatibility	between	G	and	A22
• Inbreeding	in	A22 but	not	in	A
• Relationships	in	A function	of	missing	pedigree
• Modifications	for	UPG	not	fully	included	in	H

• Solutions
• Metafounders as	generalized	UPGs	(Legarra et	al.,	2015)
• Truncated	data/pedigree	and	include	UPGs	in	H
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Unknown	parent	groups	in	A	and	H
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Seemed hard to implement

Not hard for Matailinen et al. (2016)

Low cost for Masuda et al.(2017)



Pedigree	unifications	via	pedigree	cut

1950       1960        1970        1980           1990          2000      2010

g1 g5 g11 g18 g24 g31

Same or higher accuracy with cut data/pedigree (Lourenco et al., 2014)



Results	of	mods

• 18	trait	model	for	type	- Holsteins
– Before	mods:	~	4,000	rounds
– After	UPG	mod	~	550	rounds,	like	BLUP
– After	cutting	~	500	rounds,	same	REL

• Time	per	round	<	2	x	BLUP
– single	trait:	20s/round
– 18	traits:	60s/round
– 18	traits	cut	data:	45s/round



=u Za
SNP effects

=			 				 				Z U Δ V Singular value decomposition
U’U=I, V’V=I, Δ

BV

=' 'Z Z V ΔΔV

= =' 'G UΔΔU UDU Genomic relationship matrix
Rank(G) ≤ min(#SNP,#anim)

SNP BLUP design matrix
Rank(Z’Z) ≤ min(#SNP,#anim)

Dimensionality of genomic infromation

Same dimensionality of gene content, GRM, and SNP BLUP design matrix



Reliabilities	– Jerseys	(75k	animals)

Milk	

Protein

Fat

3300																																6100															11,500																		assumed	dimensionality
≈NeL ≈2NeL	 ≈4	NeL

(number	of	core	animals)

100% = full inverse è lower accuracy

Pocrnic et al., 2016b



Reliabilities	– Holsteins	(77k)
Final score

regular G-1

4.5k                         8k           14k  19k     77k
NeL 2NeL          4NeL

Pocrnic et al., 2016b



Distribution	of	segments
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Is	inverse	of	GRM	by	APY	sound?

= +u Ts e
Breeding value

s – n x 1 vector containing all additive information of
population

1    c c
-»s T uIf uc contains n animals:

Very small error

u of any n animals contain all additive information
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How	to	estimate	P and	inv(G)?
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How	to	account	for	genetic	architecture?

• Create	SNP	BLUP
– Include	regular	SNP
– Include	causative	SNP	from	sequence	analysis
– Estimate	variance	of	each	SNP	

• Create	Genomic	relationship	matrix
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Estimated	dimensionality,	effective	
population	size	and	optimal	number	of	SNP

Specie Range of	Me
(95-99%)

Effective	
population	
size	(L=30M)

Number	of	
SNP
(12 x	Me)

Holsteins 8k-14k 149 100-180k

Jerseys 6k-12k 101 70k-150k

Angus 6k-11k 113 70k-130k

Pigs 2k-6k 43	(L=20M) 24k-72k

Chicken 3k-6k 44 36K-72k

Pocrnic et al. (2016b)



Which core animals in APY?
Bradford	et	al.	(2017)

§ Simulated	populations	(QMSim;	Sargolzaei and	Schenkel,	2009)

§ Ne	=	40
§ #genotyped	animals	=	50,000

§ Core	animals:
§ Random	gen	6		||			gen	7		||		gen8		||			gen9		||		gen	10	(y)
§ Random	all	generations
§ Incomplete	pedigree
§ Genotypes	in	gen	9	and	10	imputed	with	98%	accuracy
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Which core animals in APY?
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Which core animals in APY?
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Which core animals in APY?

80%	genotyped	animals	with	missing	pedigree	
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Multitrait ssGBLUP:	Is	SNP	selection	
important?

• SNP	selection/weighting	(BayesB,	etc.)	
– Large	impact	with	few	genotypes
– Little	or	no	impact	with	many

GBLUP accounts for QTLs when
# genotypes ≳ chromosome segments? 



ssGBLUP accuracies	using	causative	SNP

0 10 20 30 40 50 60 70 80 90 100

only	causative	SNP	+	APY

plus	by	APY

plus	true	causative	variances

plus	weighted

plus	causative	SNP

ssGBLUP	- 60k

BLUP

1000	QTL 100	QTL Fragomeni et al. (2017)



QTL

Accuracy and distance from markers 
to QTL
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Extra	issues

• Cross-validation	by	PEV
• Dimensionality	and	decay	of	genomic	info
• Dimensionality	15,000:	Is	Eurogenomics ==	US	data?
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Conclusions
• Components of GEBV in single-step easily computed

• Single-step becoming computation viable

• APY algorithm sound 

• Causative SNPs applicable to single-step – details

• Perhaps SNP selection not too important with many genotypes
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