Revision of random regression test-day model has improved genomic prediction for Nordic Red dairy cattle

T. Pitkänen, M. Koivula, J. Pösö, W.F. Fikse, U.S. Nielsen, G. P. Aamand, M.H. Lidauer

Joint Nordic test-day model was taken into use in 2006

- The Nordic countries have established crosscountry genetic evaluations for yield traits for the Nordic dairy cattle populations in 2006.
- The random regression test-day model (TDmodel) was an outcome of intensive research cooperation.
- The model for the Red Dairy Cattle (RDC) breed is most complex due to a heterogeneous population structure across the three countries.

Luke

Some model descriptions

- 9 test-day traits (milk, protein and fat) x 3 lactations
- Fixed effects nested within countries
 - calving age x breed proportion
 - year-month, days carried calf, days dry,
 - lactation curves, herd-year, herd-test-day, herd-curve
- Heterosis & recombination loss
 - by fixed and random effects
- Adjustment for heterogeneous variance (HV correction)
 - simultaneously to account for breed differences
 - across-country standardization (same genetic variance in all countries)
- Breeding values
 - 15 cow-specific coefficients define all 9 breeding value curves

Issues in RDC yield evaluation

- The reliability of genomic estimated breeding values (GEBV) for RDC was lower than expected when compared to Holstein and Jersey breeds.
- Reasons
 - Changes in herd and population structures.
 - The existing TD-model may no longer be optimal for genomic prediction equations.
- Revision of the current TD-model for the RDC evaluation is crucial in enhancing the reliability of GEBV for selection candidate animals.

Revising variance components

In old NAV RDC model the h² were too high, especially for later parities.

- Particularly VC for permanent environment and genetic components in the later lactations
- The situation was more critical than earlier since the weight of later lactations was set higher.
- Need to make update to variance components.
- Updated variance components are based on Finnish data – old on Swedish data
 - Finnish VC give lower heritabilities, especially for protein and fat and later lactations > fits better the data

Heritabilities in old (solid line) versus updated

(dashed line) model based on Finnish data

Number of test-day observations for first lactation milk yields by country and milking system

- Rapid decrease in conventional milking system (CMS) observations.
- Slightly decreasing trend in automatic milking system in DNK, no clear trend in FIN & SWE
- Sweden and Denmark lactations 1-3 and Finland 1-10 included in the data

Updating model and data for AMS observations

Model assumed the same residual variance for all AMS observations.

- In Finland measurement protocol has changed twice during the years.
- Heterogeneous variance (HV) correction didn't work properly.

Updates made

- Separate residual variance for the different AMS methods.
- Include correct measurement protocol information for AMS observations in data.
- Update HV correction to handle different AMS recording protocols.

Residual variances for different milking protocols

• For conventional milking, the test-day yield is sum of morning and evening milkings.

- For AMS, several protocols for defining test-day yields used in Finland:
 - 1. Average of one weeks milkings
 - 2. Sum of 2 successive milkings scaled to 24h yield
 - 3. Average of 4 day milkings

Holstein observations in the Finnish RDC evaluation

- In the past, Finnish herd sizes were small. As a result, test-day records for Holstein cows were included in the model to increase contemporary group sizes
- This is not as relevant as before =>
 - Holstein observations were removed
 - Need to revise model effects that include breed interaction

Bull validation results using Legarra-Reverter Regression § - Four years data cut

§ Regression of GEBV_full or GEBV_red

	Model	Bias	b ₁	R ²
MILK	GEBV _{old}	-473.88 (±363.7)	0.85	0.66
	GEBV _{new}	-291.34 (±354.9)	0.92	0.70
PROTEI N	GEBV _{old}	-17.78 (±12.3)	0.75	0.60
	GEBV _{new}	-12.41 (±11.9)	0.84	0.63
FAT	GEBV _{old}	-22.91 (±15.6)	0.84	0.63
	GEBV _{new}	-18.61 (±19.6)	0.91	0.65

Validation bulls have daughters > 20 in full data and no daughters in reduced data, n = 222

- bias=mean(Full_GEBV reduced_GEBV)
- GEBV_{old} : Old NAV evaluation model
- GEBV_{new}: New updated model with
 - Modelling of AMS data updated
 - New variance components
 - Records of Holstein contemporary cows removed from Finnish data

With the updated model the validation results improve: bias decrease and R² increase

Protein trend for selected DFS bulls

Genetic trend

Solid lines from Full data run Dashed lines from reduced data run

SD Genetic trend

Conclusions

Changes in the model improved validation results:

- New variance components
- Updated AMS residual variances for Finnish records
- Holstein observations removed (Finnish data)

Ongoing changes and improvements:

- Remove old test-day records made prior 2005.
- Improve definition of calving age, heterosis and recombination effects.
- Replace UPGs with metafounders.

Acknowledgements

Phenotypic and Genomic data NAV Nordic Cattle Genetic Evaluation,

Support: NAV, Viking Genetics

© Luonnonvarakeskus © Natural Resources Institute Finland © Naturresursinstitutet