

Genomic Prediction of Genetic Residual Feed Intake Integrating a Novel Energy Sink for Change in Body Reserves

R. B. Stephansen, J. Lassen, V. M. Thorup, B. G. Poulsen, J. Jensen, G. Sahana, & O. F. Christensen

Hard to measure and model

Focus trait in this presentation

Easy to measure and model

Maintenance (BW) + Metabolic efficiency (RFI)

Vande Haar et al. (2016)

Background and challenge with RFI

- Definition of Residual Feed Intake
 - Observed feed intake expected feed intake
 - 1st step: DMI = $fix + \beta_i E_i + \epsilon$
 - 2^{nd} step: $\epsilon = a + pe + e$

• Challenged in handling fixed effects and missing observations

- Proposed solution genetic RFI (Kennedy et al. (1993))
 - A multi-trait setting handles fixed effects and missing records better

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}$$

Modelling body reserves

•Important to account for **\Delta\body** energy in RFI

- Most eva luations uses **\Delta BW**, but its a ssumes energy equality
 - mobilization vs. deposition
 - a dipose vs. muscle tissues

- •Thorup et al. (2018) suggested EB from body reserves (EB_{body})
 - Thorup et al. (2013) tested EB_{body} from frequent BW measurements

Investigated in this study

Objective of this project

- •Genomic EBVs are important in modern dairy cattle breeding
 - Limited knowledge on genomic validation of gRFIEBVs
- •We aimed to test a **genomic** evaluation of **gRFI** in Nordic primiparous dairy cows, including **EB**_{bodv} as energy sink

Data overview

Individual weekly **feed intake** measures from

- Cattle Feed InTake, Viking Genetics
 - 3,873 HOLcows with 161K records, (2,564 primi)
 - 2,068 JER cows with 93K records, (1,505 primi)
 - 3,235 RDC cows with 139K records, (2,006 primi)
- Danish Cattle Research Center, AU-Foulum
 - 878 HOLcows with 50K records, (835 primi)

Pedigree and Genotypes

- •Pedigrees **pruned** to remove non-informative animals
 - HOL: 18,432
 - JER: 7,249
 - RDC: 12,423
 - Genetic groups: with sex, breed, country & birthyear classes
- •Genotypes used from NAV evaluation system
 - Genotype rate for cows with data
 - 92% for JER and RDC
 - 81% for HOL

Multi-variate model for DMI, ECM, BW and EBbody

- Multi-variate and multi-parity model (primi- & multiparous)
- This presentation now on focus on <u>primiparous</u> part

Model effects	
Year x Experiment/CFIT version	Fixe d
La ctation curve (4th order Legendre Polynomial), nested by herd	Fixe d
Age at calving (2 nd order Legendre Polynomial)	Fixe d
Herd x year x week	Random
Additive Genetic effect (2 nd order Legendre polynomial)	Random
Permanent Environmental effect (2 nd order Legendre polynomial)	Random
Residual	Random

Genetic model & output

- Variance components estimated with Gibbs sampler
 - RJMC module in DMU using A-matrix
 - 50K burn-in
 - 500K iterations, **sampling** every 250
 - Trace plots evaluated for **satisfying** convergence

Genomic validation

•Legarra Reverter method applied

$$GEBV_{whole} = \mu + \beta \times GEBV_{partial}$$

- •Partial datasets created by omitting herds (~1,000 cows)
 - 3 HOLgroups, 2 JER groups, & 2 RDC groups
- Lactation wise GEBVse stimated with DMU5
 - Polygenetic effect of 20%

Results h^2 and r_G - HOL

	DMI	gRFI	ECM	BW	EB _{body}
DMI	0.4 6 (0. 05)				
gRFI	0.50 (0.05)	0.24 (0.05)			
ECM	0.61 (0.05)	0.00 (0.00)	0.53 (0.04)		
BW	0.53 (0.05)	0.00 (0.00)	-9.10 (0.06)	0.55 (0.04)	
EB _{body}	-0.13 (0.11)/	0.00 (0.00)	-0.42 (0.09)	0.66 (0.10)	0.23 (0.04)

Results genomic validation

- •Results for genomic LR-validation cows
 - $\mu_{w,p}$ = Bias
 - $\Re_{w,p}$ = Dispersion
 - $\rho_{w,p}$ = Correlation

		HOL	JER	RDC
	$\mu_{w,p}$	-0.36	3.64	-1.15
DMI	Bwgp	0.92	0.75	0.96
	$ ho_{\mathrm{w,p}}$	0.68	0.51	0.66
	$\mu_{\mathrm{w,p}}$	0.34	1.69	-2.00
gRFI	$\beta_{\mathrm{w,p}}$	0.87	0.69	0.85
	$ ho_{\mathrm{w,p}}$	0.59	0.46	0.54

Take home messages

- •We can estimate primiparous gRFIGEBVs for Nordic dairy breeds
- •EB_{body} is **heritable** and can be incorporated into gRFI
- •Dispersion was in an acceptable range
 - Over dispersion was observed in **Jersey** (fewest records)

- Follows a pattern in **number** of records
- •Next step —work on **multi-parous** group

Acknowledgements

Innovation Fund Denmark

Thank you for your attention

