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Residual Feed Intake (Koch et al., 1963)

* Residuals from linear regression of feed intake (DMI) on
various energy sinks (ECM, MBW) expressed on the
phenotypic scale

DMI. = x.'b + A, "ECM. + A5, "MBW. + e,
* Estimates of regression coefficients A, and A, are
obtained by LS and phenotypes for RFI (e) are

subsequently used as observations in genetic/genomic
evaluation model




Residual Feed Intake (Kennedy et al., 1993)

* Alternatively, and equivalently, A, and Az, can be
derived as partial regression coefficients from
phenotypic co-variances among DMI and the energy
sinks

* Define C = [C;] (2x2) phenotypic co-variance matrix for
ECM and MBW, w = [w;] vector of phenotypic co-
variances between sinks and DMI. Then

[Aecm Amaw " = C'w




Residual Feed Intake (Lu et al., 2015)

Challenges of using phenotypes for RFlI from LS for genetic

analyses:

 RFlis not an observable trait

* All covariates (energy sinks) are incorrectly assumed to
have no measurement errors

* Impossible to calculate RFI if any sink is missing

* Any genetic or residual correlation between DMI and
energy sinks will affect heritability estimate for RFl and
interpretation of inferences




Use of Mixed Model Methods for RFI

* EBVs for RFI can be obtained w/o directly using
phenotypes for RFI

 Multiple-Trait (MT) model for ECM, MBW and DMI
y.=Xb+a +p +e, with

v(a,) = G - genetic covariance matrix
v(p;) = E - covariance matrix for the PE effects
v(e,) = R - residual covariance matrix

P=G+ E + R - phenotypic co-variance matrix




Use of Mixed Model Methods for RFl

* leta=[ac . ayvew apy] be EBVs for DMI and sinks
* Thena’ = [agqy, Aypw el = Npa =

= [agemy Amew (@omr = Aeem@eem = Avisw@visw )]

A, = partial phenotypic regression coefficient (derived
from MT estimate of P) of DMI on X (energy sink)

1 0 0
A=l 0 1 0
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Recursive Model Approach for RFI
Y, Y,, and Y, - phenotypes for ECM, MBW and DMI

Recursive Model (RM) equations:

Y, = fixed, + random, + e,

Y, = fixed, + random, + e,

Yy =Ny * Y+ A, %Y, + fixed; + random, + e,

A, = recursive coefficient parameter for the effect of change
in trait j caused by the phenotype of trait k
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Recursive Model Approach for RFI

Mixed linear RM for ECM, MBW and DMI:
Ay =Xb +a +p +e, with

a.* = A\J.

/ I

v(a;") = AGN’
v(p;") = AEN
v(e") = ARN

P°'=G"+E +R’

RM for ECM, MBW and DMI + restrictions on certain RM

| arameters = MT model for these traits
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Recursive Model Approach for RFI

* Restrictions on phenotypic co-variances i.e. setting p,; =
p,, = 0 of the co-variance matrix P of RM will yield the
same estimates of partial regression coefficients as shown
in the simple re-parametrization of the EBVs from the MT

model

* Given the estimates of partial regression coefficients and
the known co-variance structure of the model, EBV for RFI
can be derived using estimates of EBV for DMI and sinks
from a regular MT model for these traits




Alternative RFI Definitions

 pRFI - RFI defined on the phenotypic level (feed intake
phenotypically independent of energy sinks)

* This can be extended to other random variables affecting
DMI, leading to different definitions with different

interpretation of RFI:
e Genetic RFI (gRFI) - feed intake genetically independent of energy sinks

 PE RFI (eRFl) - feed intake adjusted for systematic environmental effects on
repeated measurements for an animal over time

e Residual RFI (rRFl) - feed intake adjusted for all effects in the model
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Alternative RFI Definitions

 Different expression of RFl = partial regression coefficients
(recursive model restrictions) for different source of
variability for DMI and energy sinks (G, P, E, R)

 EBV and co-variance components for specific RFl derived

using

* pRFI: A,
* gRFI: Ag
* eRFl: Ag
* rRFI: A

‘ with the same structure as shown earlier for A,




Exampl

e of Application

15t [actation Feed Efficiency model for Canadian Holsteins

International data: 7 E
Linear animal MT moc

DGP + 8 USA herds (6 countries)
el for 6 traits: ECM, MBW and DMI

in5—60and 61 — 305
Random effects:

DIM

e Additive genetic (G), Perm. Env. (E), Residual (R)

MC-EM-REML (MiX99 software)

Four different RFI expressions in 61- 305 DIM:
PRFI, gRFI, eRFI, rRFI



Regression Coefficients: DMI on Energy Sinks

 Regression coefficients:

_@RFL__pRF___eRFl | _rRFI _
- ECM K 0.31 0.28 0.19
 MBW  [KP 0.13 0.11 0.15

e Relative impact (%) of ECM versus MBW:

| _gRFL__pRFL__eRF Al
63 62 63 62
- mBW  EY 38 37 38
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Heritability & Repeatability (x100) of RF|
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Correlations (x100): RFIl — Sinks & DMI
|| eRF_| pRFl_|_eRFl | RFl _
ECM 0 62" 67 80

MBW 0 4. 11 =111

DMI 37 82" 88 83
Phenotypic ERS®\Y -33 0 6 23
MBW -4 0 3 -6
DMI 59 81" 85 88

*pRFI strongly genetically correlated with ECM
**pRFI genetically and phenotypically more similar to DMI than gRFI




Genetic & Phenotypic Correlations (x100)
Between Different RF| Expressions

84" 72 68

94 - 92 99
34 92 - 92
34 98 91 -

. ~ "gRFI and pRFI are genetically different traits
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Genomic Evaluation

e 111,857 weekly records

e 5,325 (4,313 genotyped) cows

1,160 (943 genotyped) sires

19,137 (8,375 genotyped) animals in pedigree

e Same model as for VCE
e ECM and MBW as sinks for DMI, 4 definitions of RFI

e Method:
e ssGBLUP
‘, e MiX99 software




Correlations (x100) Between GEBV of RFI
for Official Sires (N = 298)
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Correlations (x100) Between GEBYV for RFIl and
Other Traits for Official Sires (N = 298)

e e
-8 21
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75 14 83"
30 23 39
38 1 32

“relative to gRFI, pRFI rankings are much more like ECM and

1 DMI rankings | |




Conclusions

 Using recursive modelling as operational tools (re-
parametrization of multiple-trait model parameters)
allowed for definition, derivation and interpretation of
different expressions of RFIl in dairy cattle

* Substantial differences between different definitions of
RFI
 Genetic parameters
 Genomic evaluation results

e Consequences of using Genetic vs Phenotypic RFI for
genetic selection




Generalizations

 ‘Producing Ability’ RFI derived from G + PE co-variance
components
 ‘Herd’ RFI derived from model with random herd effect

* Other residual (or ratio) traits e.g. residual CH,
production, CH, yield or intensity
 Other (more) energy sinks e.g. A BW

 Heterogeneity of RFI between and across lactation(s)
(random regression model)




EDGP & RDGP Participating Organizations
& Data Contributors
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