

Alternative Residual Feed Intake (**RFI**) **Expressions in Dairy Cattle**

J. Jamrozik^{1,2} and P.G. Sullivan¹ ¹Lactanet Canada, Guelph, ON, Canada, ² CGIL, University of Guelph, Guelph, ON, Canada

Residual Feed Intake (Koch et al., 1963)

 Residuals from linear regression of feed intake (DMI) on various energy sinks (ECM, MBW) expressed on the phenotypic scale

 $DMI_{i} = \mathbf{x}_{i}'\mathbf{b} + \lambda_{ECM}^{*}ECM_{i} + \lambda_{MBW}^{*}MBW_{i} + e_{i}$

- Estimates of regression coefficients λ_{ECM} and λ_{MBW} are obtained by LS and phenotypes for RFI (e_i) are subsequently used as observations in genetic/genomic evaluation model

Residual Feed Intake (Kennedy et al., 1993)

- Alternatively, and equivalently, $\lambda_{ECM}~$ and $\lambda_{MBW}~$ can be derived as partial regression coefficients from phenotypic co-variances among DMI and the energy sinks
- Define $C = [C_{ij}]$ (2x2) phenotypic co-variance matrix for ECM and MBW, $w = [w_{ij}]$ vector of phenotypic covariances between sinks and DMI. Then

 $[\lambda_{ECM} \lambda_{MBW}]' = \mathbf{C}^{-1}\mathbf{W}$

Residual Feed Intake (Lu et al., 2015)

Challenges of using phenotypes for RFI from LS for genetic analyses:

- RFI is not an observable trait
- All covariates (energy sinks) are incorrectly assumed to have no measurement errors
- Impossible to calculate RFI if any sink is missing
- Any genetic or residual correlation between DMI and energy sinks will affect heritability estimate for RFI and interpretation of inferences

Use of Mixed Model Methods for RFI

- EBVs for RFI can be obtained w/o directly using phenotypes for RFI
- Multiple-Trait (MT) model for ECM, MBW and DMI
 y_i = X b + a_i + p_i + e_i, with

 $v(a_i) = G$ - genetic covariance matrix $v(p_i) = E$ - covariance matrix for the PE effects $v(e_i) = R$ - residual covariance matrix

P = **G** + **E** + **R** - phenotypic co-variance matrix

actanet

Use of Mixed Model Methods for RFI

- Let $\mathbf{a} = [a_{ECM}, a_{MBW}, a_{DMI}]'$ be EBVs for DMI and sinks
- Then $\mathbf{a}^* = [a_{ECM}, a_{MBW}, a_{RFI}]' = \Lambda_P \mathbf{a} = [a_{ECM}, a_{MBW}, a_{MBW}, (a_{DMI} \lambda_{ECM} a_{ECM} \lambda_{MBW} a_{MBW})]$
- λ_{X} = partial phenotypic regression coefficient (derived from MT estimate of P) of DMI on X (energy sink)

$$\boldsymbol{\Lambda}_{\mathsf{P}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\boldsymbol{\lambda}_{\mathsf{ECM}} & -\boldsymbol{\lambda}_{\mathsf{MBW}} & 1 \end{bmatrix}$$

Recursive Model Approach for RFI

 Y_1 , Y_2 , and Y_3 - phenotypes for ECM, MBW and DMI

Recursive Model (RM) equations: $Y_1 = fixed_1 + random_1 + e_1$ $Y_2 = fixed_2 + random_2 + e_2$ $Y_3 = \lambda_{31} * Y_1 + \lambda_{32} * Y_2 + fixed_3 + random_3 + e_3$

 λ_{jk} = recursive coefficient parameter for the effect of change in trait j caused by the phenotype of trait k

Recursive Model Approach for RFI

Mixed linear RM for ECM, MBW and DMI: $\Lambda \mathbf{y}_{i} = \mathbf{X} \mathbf{b}^{*} + \mathbf{a}_{i}^{*} + \mathbf{p}_{i}^{*} + \mathbf{e}_{i}^{*}$, with

$$\boldsymbol{a}_i^* = \boldsymbol{\Lambda} \boldsymbol{a}_i$$

 $v(a_i^*) = \Lambda G \Lambda'$ $v(p_i^*) = \Lambda E \Lambda'$ $v(e_i^*) = \Lambda R \Lambda'$

 $P^* = G^* + E^* + R^*$

RM for ECM, MBW and DMI + restrictions on certain RM parameters = MT model for these traits

Recursive Model Approach for RFI

- Restrictions on phenotypic co-variances i.e. setting p₁₃^{*} = p₂₃^{*} = 0 of the co-variance matrix P^{*} of RM will yield the same estimates of partial regression coefficients as shown in the simple re-parametrization of the EBVs from the MT model
- Given the estimates of partial regression coefficients and the known co-variance structure of the model, EBV for RFI can be derived using estimates of EBV for DMI and sinks from a regular MT model for these traits

Alternative RFI Definitions

- pRFI RFI defined on the phenotypic level (feed intake phenotypically independent of energy sinks)
- This can be extended to other random variables affecting DMI, leading to different definitions with different interpretation of RFI:
 - Genetic RFI (gRFI) feed intake genetically independent of energy sinks
 - PE RFI (eRFI) feed intake adjusted for systematic environmental effects on repeated measurements for an animal over time
 - Residual RFI (rRFI) feed intake adjusted for all effects in the model

Alternative RFI Definitions

- Different expression of RFI = partial regression coefficients (recursive model restrictions) for different source of variability for DMI and energy sinks (G, P, E, R)
- EBV and co-variance components for specific RFI derived using
 - pRFI: **∧**_P
 - gRFI: ∧_G
 - eRFI: Λ_E
 - rRFI: Λ_{R}

with the same structure as shown earlier for $\Lambda_{\rm P}$

Example of Application

- 1st lactation Feed Efficiency model for Canadian Holsteins
- International data: 7 EDGP + 8 USA herds (6 countries)
- Linear animal MT model for 6 traits: ECM, MBW and DMI in 5 – 60 and 61 – 305 DIM
- Random effects:
 - Additive genetic (G), Perm. Env. (E), Residual (R)
- MC-EM-REML (MiX99 software)
- Four different RFI expressions in 61- 305 DIM:

pRFI, gRFI, eRFI, rRFI

Regression Coefficients: DMI on Energy Sinks

• Regression coefficients:

	gRFI	pRFI	eRFI	rRFI
ECM	0.48	0.31	0.28	0.19
MBW	0.14	0.13	0.11	0.15

• Relative impact (%) of ECM versus MBW:

	gRFI	pRFI	eRFI	rRFI
ECM	63	62	63	62
MBW	37	38	37	38
100				

Heritability & Repeatability (x100) of RFI

Correlations (x100): RFI – Sinks & DMI

		gRFI	pRFI	eRFI	rRFI
Genetic	ECM	0	62*	67	80
	MBW	0	4	11	-11
	DMI	37	82**	88	83
Phenotypic	ECM	-33	0	6	23
	MBW	-4	0	3	-6
	DMI	59	81**	85	88

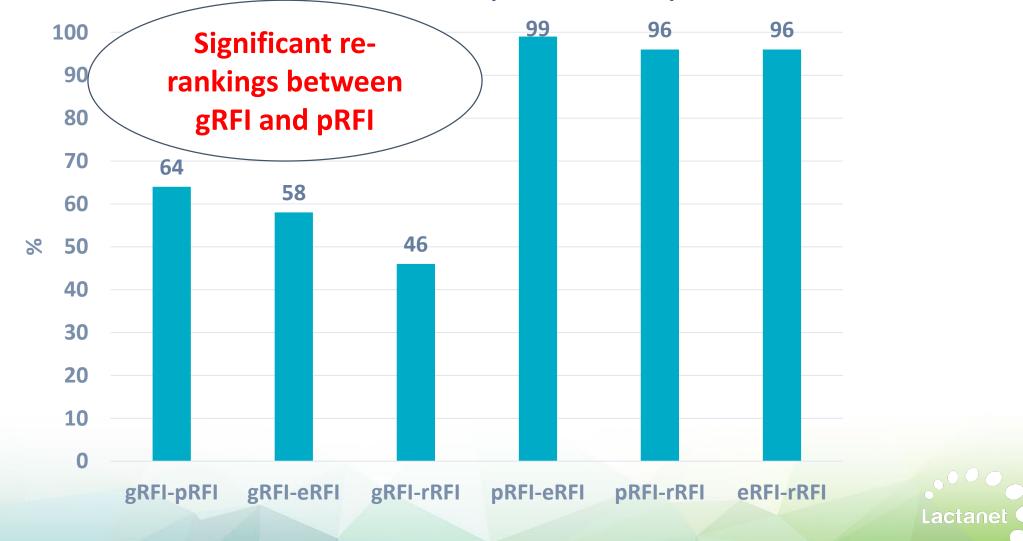
*pRFI strongly genetically correlated with ECM **pRFI genetically and phenotypically more similar to DMI than gRFI

Lactanet

Genetic & Phenotypic Correlations (x100) Between Different RFI Expressions

	gRFI	pRFI	eRFI	rRFI
gRFI	-	84*	72	68
pRFI	94	-	92	99
eRFI	84	92	-	92
rRFI	84	98	91	-

*gRFI and pRFI are genetically different traits


Lactanet

Genomic Evaluation

- 111,857 weekly records
- 5,325 (4,313 genotyped) cows
- 1,160 (943 genotyped) sires
- 19,137 (8,375 genotyped) animals in pedigree
- Same model as for VCE
 - ECM and MBW as sinks for DMI, 4 definitions of RFI
- Method:
 - ssGBLUP
 - MiX99 software

Correlations (x100) Between GEBV of RFI for Official Sires (N = 298)

Correlations (x100) Between GEBV for RFI and Other Traits for Official Sires (N = 298)

	ECM	MBW	DMI
gRFI	-1	-8	21
pRFI	75*	14	83*
eRFI	80	23	89
rRFI	88	1	82

*relative to gRFI, pRFI rankings are much more like ECM and DMI rankings

Conclusions

- Using recursive modelling as operational tools (reparametrization of multiple-trait model parameters) allowed for definition, derivation and interpretation of different expressions of RFI in dairy cattle
- Substantial differences between different definitions of RFI
 - Genetic parameters
 - Genomic evaluation results
- Consequences of using Genetic vs Phenotypic RFI for genetic selection

Generalizations

- 'Producing Ability' RFI derived from G + PE co-variance components
- 'Herd' RFI derived from model with random herd effect
- Other residual (or ratio) traits e.g. residual CH₄ production, CH₄ yield or intensity
- Other (more) energy sinks e.g. Δ BW
- Heterogeneity of RFI between and across lactation(s) (random regression model)

EDGP & RDGP Participating Organizations & Data Contributors

Thank You

