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Dry Matter Intake



▪ To select for feed efficiency

▪ We calculate EBVs for DMI, instead of residual traits

Genetic Evaluation for Dry Matter Intake (DMI)
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E-chapter 40. Dry matter intake

Expensive trait to measure

Few records in the beginning

Simple repeatability model



Current data
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Now we have accumulated

DMI data from:

+10K Holstein cows

+20K lactations

+1 million DMI records



Current data
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Now we have accumulated

DMI data from:

+10K Holstein cows

+20K lactations

+1 million DMI records

Opens opportunity for
improved modelling!



▪ Multi-trait ⇒ adjusted by MilkE, MBW and dMBW

▪ Dynamic ⇒ RRM for traits on lactation day

▪ Genetic ⇒ adjustment on the genetic level

▪ Requires a dynamic modelling of the DMI genetic component

Multi-trait dynamic model for genetic RFI
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Islam et al., 2020 Khanal et al., 2022 Stephansen et al., 2023 Houlahan et al., 2023



▪ Newer versions of ASReml

o XFA parameterization for variance structures

o Allows for incremental increase in complexity

Improvements in Statistical Software
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▪ Newer versions of ASReml

o XFA parameterization for variance structures

o Allows for incremental increase in complexity

▪ Newer versions of MiXBLUP

o efficient ssSNPBLUP running on GPUs

Improvements in Statistical Software
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Random Regression Models



Random regressions

on days in milk (nested in parity)

▪ Linear

▪ Cubic

▪ Repeatability

▪ Piecewise-constant

Random Regression Model
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Cross-Validation Assessment



• Parametric

o Likelihood, AIC, BIC

Semi-parametric

LR-metho

• Non-parametric

o CV on DRPs

Validation approaches
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Semi-parametric

Compares EBVs from partial data,

with EBVs from full data.



• Parametric

o Likelihood, AIC, BIC

• Semi-parametric

o LR-method

• Non-parametric

o CV on DRPs

Validation approaches
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Semi-parametric

Compares EBVs from partial data,

with EBVs from full data.

Used PWC model
fitted with full data

as the prediction target



Possible discrepancies

• Level bias -> SB

• Inflation/deflation -> NU

• Accuracy -> LC

MSE = SB + NU + LC

Validation metrics
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▪ Focal groups

• validation cows, (0 records in partial , +3 in full) #2958

• young sires, (0 phenotyped daughters in partial, +10 in full) #41

• proven sires, (+10 phenotyped daughters in partial, +1 in full) #38

▪ Lactation periods

• Early (weeks 5 & 10)

• Middle (weeks 15 & 25)

• Late (weeks 35 & 45)

Forward validation
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Cutoff date: 2020

Disclaimer: pedigree blups shown here
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Simple model predicts well in 

middle of lactation

And poorly in early and late 

periods

Forward validation for 

Linear RRM
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Level bias due to systematic 

under- and over-predictions in 

the extremes of the range

Accuracy is also lower in the 

middle period, only for 2+ lact.

MSE partitioned into 

components
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▪ Cross-validation is crucial for assessing predictive performance

▪ Predictive accuracy will vary throughout the lactation

▪ Separating MSE into components can assist interpretation

Discussion
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▪ Other basis for the RRM can be explored (e.g. splines)

▪ Could PWC be entertained for the evaluation?

o Against which model could it be validated?

▪ Different criteria for focal animals may be considered

▪ Uncertainty in validation metrics should be included

Discussion
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Thanks for your 

attention!
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Questions and comments?

Remember, work in progress,

Suggestions are welcome.

matias.schrauf@wur.nl
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