

Using cow carcass weight to select efficient cows

Getinet M. Tarekegn, Harriet Bunning, Marco Winters, Raphael Mrode, Mike Coffey

How much does it cost (\pounds or CO_2) to keep a cow?

Ideal phenotype: Dry Matter Intake or Methane

How much does it cost (\pounds or CO_2) to keep a cow?

Ideal phenotype: Dry Matter Intake or Methane

Potential proxy: Cow Weight

How much does it cost (\pounds or CO_2) to keep a cow?

Ideal phenotype: Dry Matter Intake or Methane

Potential proxy: Cow Weight

BUT No national liveweight data

Cull Cow Carcase Data

- UK Carcase Database: 14.5 million animals
 - Carcase Weight
 - EUROP Conformation
 - EUROP Fat
 - Date of Slaughter

- >1.8 million cull cows
 - Must have had > 0 calves

Birth Year

Cull Cow Carcase Data: Breeds

- 220 different breed codes
- Inc. crossbred
- Most common:
 - Holstein
 - Lim X
 - Friesian
 - Angus X
 - Simmental X

Aim: Calculate genetic parameters for cull cow carcase traits to check viability for use as proxy traits

Materials & Methods

- Cows 1095 7811 days old
- Carcase weight 275 500kg
- 4991 cows born 1998 2010 included
- 5 generations, pedigree including 32,917 animals
- 12 breed groups included, with Limousin most common

- Phenotypes:
 - Carcase Weight (kg)
 - EUROP Conformation (45 points)
 - EUROP Fat Class (45 points)

Materials & Methods

 $Y_{ijklmno} = Sr_i + S_j + A_k + CYBSB_l + BYBSB_m + a_n + e_{ijklmno}$

Where:

- $Sr_i = source \ of \ the \ cows$
- $S_j = Season of birth$
- $A_k = Age \ of \ the \ cows \ fitted \ as \ covariate$
- $CYBSB_l$ = combination of cow-year of birthseason
- $BYBSB_m$ = breed-year of birth-season
- $a_n = Animal as Random$
- $e_{ijklmno} = Residual$

The heritability estimates were generated using REMLF90 program of the BLUPF90 family.

Results

Traits	h^2	SE
Carcass Weight	0.79	0.003
EUROP Fat Class	0.36	0.095
EUROP Conformation	0.32	0.081

Results

Traits	h^2	SE
Carcass Weight	0.79	0.003
EUROP Fat Class	0.36	0.095
EUROP Conformation	0.32	0.081

Prime Traits	h^2	SE
Carcass Weight	0.42	0.022
EUROP Fat Class	0.45	0.023
EUROP Conformation	0.42	0.022

Pritchard, T.C., Wall, E. and Coffey, M.P., 2021. animal, 15(2), p.100090.

Results

Traits	h^2	SE	
Carcass Weight	0.79	0.003	
EUROP Fat Class	0.36	0.095	
EUROP Conformation	0.32	Higher heritability due to	less
		environmental variation?	
Prime Traits	h^2	environmental variation	?
Prime Traits Carcass Weight	h ² 0.42	environmental variation 0.022	?
Prime Traits Carcass Weight EUROP Fat Class	<i>h</i> ² 0.42 0.45	environmental variation 0.022 0.023	?

Pritchard, T.C., Wall, E. and Coffey, M.P., 2021. animal, 15(2), p.100090.

Conclusion

Traits	h^2	SE
Carcass Weight	0.79	0.003
EUROP Fat Class	0.36	0.095
EUROP Conformation	0.32	0.081

- Preliminary results show moderate to high heritability for cull cow carcase traits
- Good potential target traits for selective breeding

What Next?

Use these phenotypes to predict liveweight

Options:

- 1. Use constant killing out percentage (only carcase weight)
- 2. Use EUROP corrected killing out percentage (carcase weight, conformation & fat)
- 3. Also use other data (age & days since last calving)

Option 1: Carcase weight alone

Liveweights for Stabiliser cows provided by Stabiliser Cattle Company

Liveweight = 286 + 1.1 * Carcase Weight

 $R^2 = 0.32$

Mean KO% = 52%

Option 2: Include other carcase traits

Liveweights for Stabiliser cows provided by Stabiliser Cattle Company

- Preliminary results suggest that both EUROP Conformation and Fat have effects on killing out percentage
- Suggests using more variables to predict liveweight may be better

Option 3: Include other variables

Liveweights for Stabiliser cows provided by Stabiliser Cattle Company

- Preliminary results suggest days since last calving also has an important effect on killing out percentage
- Opportunity for QA e.g. remove animals > 400 days since last calving

What Next?

Use these phenotypes to predict liveweight

Options:

- 1. Use constant killing out percentage (only carcase weight)
- 2. Use EUROP corrected killing out percentage (carcase weight, conformation & fat)
- 3. Also use other data (age & days since last calving)
- Next: Test prediction model using other breeds

Calculate genetic parameters for predicted liveweight

Summary

- Cull cow carcase data is an untapped source of useful phenotypes
- Cull cow carcase weight is highly heritable
- There is potential to predict cow liveweight using carcase weight
- Other factors (such as EUROP grade, and calving data) may improve this prediction

Cull cow carcase weight could be used as a proxy to select low input cows

Thank you for listening

For more info on UK National Beef Evaluations:

ahdb.org.uk/knowledge-library/national-beef-evaluations

