Genetic correlations between daily dry matter intake, body weight and enteric methane in Norwegian Red dairy cows

Karoline A. Bakke^{2*} and B. Heringstad^{1,2}

¹Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway ²Geno Breeding and A.I organisation, Ås, Norway

* Presenting author Karoline A. Bakke: <u>kb@geno.no</u>

Background

 Geno has equipment for phenotyping individual feed intake, methane & body weight

• Commercial dairy herds (14) + 1 research herd

 \circ Farms with AMS

 $_{\odot}$ Norwegian Red dairy cows

All cows are genotyped (~ 1.000 / year)

Project aim

Select for improved feed efficiency and reduced enteric methane emissions in NR cows

Sub aim

Estimate heritabilities and genetic correlations between daily dry matter intake, methane production and body weight of Norwegian Red cows

Data

- \circ CH4 from 25 commercial herds
- $\circ~$ Feed intake and body weight from 8 of these herds
- $\,\circ\,$ Data on 2 074 cows
- $\circ~$ Data from 2020 to 2024
- $\,\circ\,$ A total of 452 055 daily observations

Phenotypic distributions

Models

Linear animal repeatability models (bivariate)

Y = Herd + Week + Pa_CaAge + htd + a + pe + e

Traits (Y)

CH4: avg daily methane (gram)

BW: avg daily body weight (kg)

dDMI: sum daily dry matter intake (kg)

Models

Linear animal repeatability models (bivariate)

Y = Herd + Week + Pa_CaAge + htd + a + pe + e

Herd

Week: lactation stage as weeks in milk
Pa_CaAge: calving age for first parity, or parity (>1)

FIXED EFFECTS

Traits (Y)

CH4: avg daily methane (gram)

BW: avg daily body weight (kg)

dDMI: sum daily dry matter intake (kg)

Models

Linear animal repeatability models (bivariate)

Y = Herd + Week + Pa_CaAge + htd + a + pe + e

htd: testday within herd *a:* animal genetic *pe:* permanent environment animal *e:* residual

RANDOM EFFECTS

Traits (Y)

CH4: avg daily methane (gram)

BW: avg daily body weight (kg)

dDMI: sum daily dry matter intake (kg)

Results

 \circ **dDMI:** sum daily dry matter intake (kg)

- **BW:** avg daily body weight (kg)
- CH4: avg daily methane (gram)

Heritabilities (h²) and genetic correlations

Trait	dDMI	BW	CH4
dDMI	0.29 (0.05)		
BW	0.59 (0.11)	0.57 (0.05)	
CH4	0.65 (0.10)	0.50 (0.09)	0.39 (0.04)
h^2 calculated as: $(\sigma_a^2 / (\sigma_a^2 + \sigma_{htd}^2 + \sigma_{pe}^2 + \sigma_e^2))$			

Conclusion

- Estimated heritabilites were relatively high (0.29 0.57)
- Heritability of dDMI increased when a bivariate model with CH4 was used (0.18 to 0.29)
- Logical results and expected direction of genetic correlations
- $\circ~$ Heavier cows, increased dry matter intake and more methane
- Further research is needed to better understand effects of selecting for improved feed efficiency and methane emission

Breeding for better

